简介 — 自旋玻璃是统计物理学中的一个重要范式。除了它们在描述无序经典磁体方面的相关性 [1,2] 之外,研究还表明,优化任务(例如旅行商问题)可以映射到求解自旋玻璃系统的基态 [1,3,4] 。通过引入横向场,可以将经典自旋玻璃提升为量子模型。由此产生的量子自旋玻璃本身就构成了研究无序和挫折与量子效应相互作用的重要场所 [5] 。此外,有证据表明,可以利用量子性来简化优化任务,例如通过量子退火 [6 – 10] 。量子自旋玻璃模型的教科书例子是量子 Sherrington-Kirkpatrick (QSK) 模型,它是经典 Sherrington-Kirkpatrick (SK) 模型的推广 [11,12] 。QSK 模型已在文献中得到了广泛的分析研究 [12 – 18] 和数值研究 [19 – 30] 。虽然著名的 Parisi 解 [31,32] 为经典 SK 模型提供了完整的解,但量子 SK 模型仍有许多悬而未决的问题。
图 2-9:2022 年净头寸(不含 McNeil)......................................................................................................................... 65 图 2-10:2022 年净头寸......................................................................................................................................... 65 图 2-11:BED 的容量义务和发电资源提供的容量 ......................................................................................... 66 图 2-12:截至 2023 年 6 月的 BED Tier 1 要求和合格资源 ............................................................................. 67 图 2-13:截至 2023 年 6 月的 BED Tier 2 要求和合格资源 ............................................................................. 68 图 2-14:截至 2023 年 6 月的 BED Tier 3 要求和合格资源 ............................................................................. 69 图 2-15:资源比较 ......................................................................................................................................... 98 图 3-1:BED 历史年度峰值/最小负荷 ............................................................................................................. 100 图 3-2:系统损耗 ................................................................................................................................................ 103 图 3-3:变压器负荷报告示例 ...................................................................................................................... 108 图 3-4:伯灵顿历史 SAIFI 值 ...................................................................................................................... 112 图 3-5:伯灵顿历史 CAIDI 值 ...................................................................................................................... 112 图 3-6:伯灵顿历史动物接触停电次数 ...................................................................................................... 116 图 4-1:伯灵顿 1960-2022 年的总能源使用量 ............................................................................................. 131 图 4-2:2015-2022 年能源效率年度 MWh 节省量和第一年能源节省成本 ............................................................................................................. 133 图 4-3:2015-2022 年按主要最终用途划分的能源效率 MWh 节省量 ............................................................................................................. 135 图 4-4:EEU 资源收购预算预测,2024 年至 2043 年 .............................................................................. 135 图 4-5:EEU 年度增量 MWh 节省量实际值和预测值,2012 年至 2043 年 ........................................................ 136 图 4-6:EEU 累计 MWh 节省量预测,经通胀调整,2024 年至 2043 年 ........................................................ 137 图 4-7:预测商业 EEU MWh 节省量(按最终用途),2024 年至 2043 年 ........................................................ 137 图 4-8:预测住宅 EEU MWh 节省量(调整后),2024 年至 2043 年 ........................................................ 138 图 4-9:预测 EEU 第一年节省能源成本(调整后),2024 年至 2043 年 ............................................................. 139 图 4-10:2017 年至 2032 年 Tier III 计划实际活动和预测活动......................................................................................... 140 图 4-11:按计划区域划分的年度 Tier III 激励措施......................................................................................................... 142 图 4-12:2017 年至 2022 年电动汽车 Tier III 激励措施......................................................................................................... 146 图 4-13:预计电动汽车激励措施——低、基准和高情况......................................................................................................... 147 图 4-14:预测的电池供电轻型汽车的 MWh 销售量与总 MWh 销售量的比较............................................................................................................................. 148 图 4-15:家庭电动汽车充电负荷概况与公共/工作场所电动汽车充电负荷概况 ............................................................................................. 149 图 4-16:预计电动汽车累计温室气体减排量部署,2020-2042 年 ...................................................................................................................... 150 图 4-17:电动汽车客户成本测试结果 ...................................................................................................................... 152 图 4-18:电动汽车公用事业成本测试结果 ...................................................................................................................... 153 图 4-19:电动汽车社会成本测试结果 ...................................................................................................................... 154 图 4-20:预计电动公交车兆瓦时销售量,2020-2042 年 ...................................................................................................... 155 图 4-21:GMT 电动公交车充电概况,2022 年 8 月 ...................................................................................................... 156 图 4-22:预计电动公交车部署带来的温室气体减排量 ............................................................................................. 157 图 4-23:电动公交车客户影响测试结果 ................................................................................................................ 158 图 4-24:电动公交车公用事业成本测试结果........................................................................................................... 159 图 4-25:电动公交车社会成本测试结果................................................................................................................... 160 图 4-26:2014 年至 2022 年 BED 自有 EVSE 兆瓦时销量和用户数量......................................................................... 161 图 4-27:2020 年至 2042 年工作场所 EVSE 充电销量......................................................................................... 163 图 4-28:2 级工作场所 EVSE 客户影响测试结果......................................................................................... 164 图 4-29:2 级工作场所 EVSE 公用事业成本测试结果..................................................................................... 165 图 4-30:2 级工作场所 EVSE 社会成本测试结果 ............................................................................................. 165 图 4-31:伯灵顿热泵累计安装量,2017 年至 2022 年 .............................................................................. 166 图 4-32:预计住宅热泵安装数量(累计),2022 年至 2042 年 ...................................................................... 167 图 4-33:预计热泵 MWh 销售量(仅供暖),2022 年至 2042 年 ............................................................................. 168 图 4-34:典型的寒冷气候热泵负荷曲线 ............................................................................................. 169 图 4-35:预计热泵部署带来的累计温室气体减排量,2020 年至 2042 年
弗吉尼亚州阿灵顿市 22204-2490 案卷号 2386-23 参考:签名日期发件人:海军记录修正委员会主席收件人:海军部长主题:审查美国海军 XXX-XX 号海军记录参考:(a) 标题 10 USC § 1552 (b) BUPERSINST 1610.10E 附件:(1) DD 表格 149 及其附件(2) 体能报告和咨询记录,20 年 3 月 1 日至 21 年 2 月 28 日(3) 体能报告和咨询记录,20 年 3 月 1 日至 21 年 2 月 28 日(4) 事件时间表(5) CO,ltr 1570 [SSN],22 年 10 月 26 日(6) 体能报告和咨询记录,20 年 3 月 1 日至 21 年 2 月 28 日(7) NPC 备忘录1610 号,2023 年 3 月 27 日 1. 根据参考 (a) 的规定,主体(以下简称为请愿人)向海军记录更正委员会(委员会)提交了附件 (1),请求通过修改附件 (2) 来更正其海军记录。2. 委员会由 2023 年 5 月 2 日审查了请愿人的错误和不公正指控,并根据其规定,决定根据现有的记录证据采取以下指示的纠正措施。委员会审议的文件材料包括附件、相关部分
SMART 目标:到 2020 年 5 月、到 2020 年 6 月,通过 I Ready 年终诊断衡量,90% 的中心学校 1-4 年级学生的阅读和数学成绩将以典型的年度增长方式提高,处于风险范围内的学生比例将从 10%(ELA)和 13%(数学)下降到 2%。到年底的 I Ready 评估中,处于风险范围内的学生将至少增加 25 个增长点。策略 1:90% 的学生的阅读成绩将以典型的年度增长方式提高,处于风险范围内的学生比例将从 10% 下降到 2%。到年底的 iReady 评估中,处于风险范围内的学生将显示出 25 分的增长。
1.3为什么生物多样性很重要?我们依靠自然环境来进行健康,福祉,经济稳定和社会发展。无论我们是否意识到这一点,我们的日常需求与重要的“生态服务”生物多样性提供了本质上的联系,而我们无法承受的损失。生物系统的灭绝和变化总是自然发生的,但是现在发生这些损失和变化的速度引起了人们的严重关注。生物多样性已经发生的丧失是惊人的,未来的预测也是如此。这种下降在伦敦等城市地区敏锐地经历,在伦敦,发展,人和野生动植物之间的竞争通常是最大的。至关重要的是,我们在全球范围内保护和维护地球的生物多样性至关重要,但同样重要的是我们在地方一级采取行动。
5。i,签名,放弃和释放,并同意持有无害和赔偿的阿灵顿培训与发展,其雇员,代理人,高级官员和董事对任何与我参加锻炼计划有关的任何索赔。本协议对我的继承人,执行者,管理员和任务具有约束力。参与者的签名:____________________________________日期:____________签名:_____________________________________________________________________________________________________________________________________________________________________________日期:________________
根据研究,家长和社区参与学校事务对学生有很多好处。这些好处包括:提高学业参与度、增加人生成功率、减少辍学率。John Hattie 的研究元分析表明,当学校氛围积极时,即家长和学校工作人员之间有积极的关系时,学生成绩就有可能提高。学校氛围效应的效应量为 0.53。当学校氛围积极时,学校工作人员更有可能让家长参与进来,帮助他们获得帮助孩子取得成功所需的技能。让家长参与进来有可能对学生的成绩产生积极影响。家长参与的效应量为 0.30。家长期望的效应量为 0.50。家长计划的效应量为 0.39。家长/成人辅导的效应量为 0.64。
弗吉尼亚州阿灵顿市 22204-2490 案卷编号 529-24 编号:签名日期发件人:海军记录修正委员会主席致:海军部长主题:审查美国海军 XXX-XX- 号海军记录编号:(a) 美国法典第 10 章第 1552 节(b) USD 备忘录,2017 年 8 月 25 日(Kurta 备忘录)(c) USECDEF 备忘录,2018 年 7 月 25 日(Wilkie 备忘录)(d) PDUSD 备忘录,2024 年 4 月 4 日(Vazirani 备忘录)(e) 申请人的案件文件附件:(1) DD 表格 149(2) 咨询意见,2024 年 6 月 13 日 1. 根据参考 (a) 的规定,申请人(以下简称申请人)向海军记录修正委员会(委员会)提交了附件 (1),请求通过准予医疗退休来更正他的海军记录。2. 委员会由、和组成,于 2024 年 8 月 1 日审查了申诉人的错误和不公正指控,并根据其规定,确定应根据现有的记录证据采取下文指出的纠正措施。委员会考虑的文件材料包括附件、海军记录的相关部分以及适用的法规、法规和政策,包括参考文献 (b) 至 (d) 和附件 (2),即合格医疗专业人员提供的咨询意见 (AO)。该 AO 被认为对申诉人有利。3. 委员会审查了与申诉人的错误和不公正指控有关的所有记录事实后,发现如下:a. 在向本委员会提出申请之前,申诉人已用尽海军部现行法律和法规规定的所有可用行政补救措施。尽管请愿人没有及时提出申请,但根据《库尔塔备忘录》,诉讼时效已被免除。
该职位加入了第n个周期的设计团队,专注于核心技术系统的开发;用于锂离子电池回收的电萃取技术。您将利用您的设计 - 构建测试体验,以帮助从实验室到现场加速技术规模。设计和控制流体系统(液压和气动)的经验将建立健壮可靠的实验室以及商业规模的化学处理系统。您将通过设计和验证来推动复杂零件的开发,关键技术组件的子组件。一种定量且迭代的方法可以帮助您将复杂的问题分解为有形和可解决的步骤。依靠第一原则是您整体工程方法的核心,快速原型验证了您的分析解决方案。您在CAD建模和仿真方面的经验(CFD,FEA)为您的数据驱动工程增添了信心。与供应商,研发团队和产品负责人保持清晰,不断的沟通,维护着有效的共享学习环境。作为第n个周期以积极的增长里程碑为目标,您的动力和组织技能将帮助设计团队快速交付
引言为我们的客户提供出色的服务是我们工作的核心。无论您是申请停车许可证,注册出生,参观我们的废物回收中心,获得社会护理,还是使用我们广泛的服务,我们都希望为您提供最佳的体验。我们有一种明确的方法,可以与客户进行每一次互动,无论是大小的,是积极而宝贵的体验。这将为我们提供提供支持,建立信任,促进协作并推动积极和持久变化的机会。这种策略的发展反映了我们对倾听,学习和回应我们多元化社区需求的承诺。作为此策略的一部分,我们正在进行的工作将使我们详细介绍了客户不断变化的需求和期望以及我们如何共同努力以真正改变。议员Mandy Porter内阁资源成员