始终引用已发布的版本,这样作者将通过跟踪引用计数的服务(例如 Scopus)获得认可。如果您因为无法访问已发布的版本而需要引用 TSpace 中的作者手稿的页码,则除了引用已发布的版本外,还使用记录页面上的永久 URI(句柄)引用 TSpace 版本。
结果表明,所研究的电弧炉渣可以替代混凝土中高达 40% 的石灰石粗骨料。然而,与仅含石灰石骨料的混凝土相比,含渣骨料的混凝土的 MOE 较低,这表明它比普通混凝土更具柔韧性。这一特点可能对路面等低应力应用有益,但对结构应用则不利。因此,降低 MOE 应是优化骨料替代水平的主要考虑因素。还应将 MOE 作为混凝土混合料设计过程的一部分进行测量,以便为潜在用户提供预期减少量的准确估计,合格的设计专业人员应对潜在应用进行工程审查,以确认这种 MOE 减少是可以接受的。
摘要:基于直流再生器的带热能存储的太阳能发电塔具有产生具有成本效益的基载电力的潜力。一种可以进一步节约成本但尚未得到广泛研究的库存选择是电弧炉炉渣。这种用途不仅具有经济优势,而且有利于环境保护,因为这种类型的炉渣大部分目前不再使用,而是被填埋处理。在已完成的欧盟项目 REslag 中,研究了炉渣的各种后续用途,包括这里介绍的将烧结炉渣卵石用作太阳能发电塔中再生器的库存的可能性,其中空气作为传热流体。本文介绍了该项目不同阶段的主要结果,重点介绍了尚未发表的研究。除了对不同设计以及“轴向流动—站立”储存铅概念的部分负载和非设计行为进行热模拟的结果外,这些结果主要是对储存分配器设计的流体力学计算和对炉渣的材料研究的结果。总之,可以说烧结炉渣球在热、机械和化学方面与传统库存材料具有竞争力,这些研究的结果证实了基于炉渣的储存的原理可行性。详细阐述了定义的储存铅概念,并通过模拟和实验确认了设计的性能。
7 高炉的原材料通过顶部的钟罩系统装入,同时预热的空气通过底部的风口吹入。空气中的氧气与热碳(焦炭)反应生成一氧化碳,一氧化碳是一种还原气体,与氧化铁反应释放铁。这使得铁自由熔化并滴落到炉床,形成一层厚厚的液态铁。与此同时,石灰石与其他杂质反应形成液态炉渣。这也会落到炉床,但由于比铁轻,所以浮在表面。随着液态铁和炉渣在炉膛中积聚,首先是炉渣,然后是熔融金属通过炉底的孔排出。这些孔被称为炉渣和铁槽。整个过程是连续的,日夜不停地进行数年,直到炉子的耐火衬里开始失效。在此阶段,将炉子“吹扫”,安装新的耐火衬里,并为炉子的另一次“活动”做好准备。
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
玻璃的热导率测量结果取决于所用样品的厚度(图 1)。这种行为归因于辐射传导率 kR' 的贡献,这种现象可能发生在半透明介质(如炉渣)中。辐射传导率通过介质中各个部分对辐射能的吸收和发射机制发生(1,2)。考虑炉渣中的薄部分,该部分吸收的辐射能将导致其温度升高,从而将辐射热发射到较冷的部分。该过程可以通过介质连续发生,很明显,以这种方式传输的能量将随着部分数量的增加(即厚度增加)而增加,直到达到 kR 达到恒定值的点。此时炉渣被称为“oEticall~
Naima是北美玻璃,岩羊毛和炉渣绝缘产品的北美制造商协会。其作用是通过使用玻璃,岩羊毛和炉渣丝网隔热材料来促进能源效率和环境保护,并鼓励安全生产和使用这些材料。通过隔离学院™,我们利用组织和成员的集体绝缘专业知识来授权房主和专业人员做出明智的绝缘选择。我们的使命是通过绝缘材料实现更舒适,能源和可持续的未来 - 我们一直在与建筑专业人士,房主,政府机构以及公共利益,能源和环保团体合作,以实现这一愿景。