生物炭应用于农业和森林土壤,会影响土壤的生育能力和植物生产(第13章)。 植物生产力和土壤肥力直接受养分的影响,这是土壤环境中养分转化的产物。 生物炭也被称为生态系统C的持续形式,与其他修正案相比,它长期存在于土壤中(第11章)。 由于这些原因,对土壤的生物炭应用如何影响养分转化和植物的可用性,同时增加土壤生态系统中的净C储存。 尽管越来越多的证据表明,在各种自然和农业环境中,土壤中添加生物炭可能会增强植物的产量(Lehmann和Rondon,2006; Atkinson等,2010; Jeffery等,2011; Gao等,2019; Hossain等,2019; Hossain等,2020),对土壤营养的直接影响biochar of dimchar cychar cyclient cyclient生物炭应用于农业和森林土壤,会影响土壤的生育能力和植物生产(第13章)。植物生产力和土壤肥力直接受养分的影响,这是土壤环境中养分转化的产物。生物炭也被称为生态系统C的持续形式,与其他修正案相比,它长期存在于土壤中(第11章)。由于这些原因,对土壤的生物炭应用如何影响养分转化和植物的可用性,同时增加土壤生态系统中的净C储存。尽管越来越多的证据表明,在各种自然和农业环境中,土壤中添加生物炭可能会增强植物的产量(Lehmann和Rondon,2006; Atkinson等,2010; Jeffery等,2011; Gao等,2019; Hossain等,2019; Hossain等,2020),对土壤营养的直接影响biochar of dimchar cychar cyclient cyclient
IPCC方法基于以下假设:计算将在国家一级进行有关特定生物char的可用数据,但是碳去除项目的运营商可以使用生物炭,并能够利用对生物炭的更详细的特征以及使用的条件。Woolf等人的论文。(2021)建立在IPCC工作的基础上,并根据生物炭中的氢与碳原子的比率(H/C ORG比率,可以轻松测量的特性)以及将生物char的平均温度结合到100,500和500年,500年和000年。通过几种现有认证标准,这种关系已被用作估计生物炭中碳存储的基础。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
作为 ANZBIG 主席,我很高兴邀请您参加并赞助 2025 年生物炭博览会,这是今年最重要的活动,重点关注推进生物炭解决方案和促进可持续未来。由 ANZBIG 主办的这一旗舰会议呼吁行业领袖、政策制定者、研究人员和创新者采取行动,展示生物炭和可再生能源在缓解气候变化和推动经济增长方面的潜力。为什么要参加?2025 年生物炭博览会将重点介绍生物炭在减轻至少 10% 的澳大利亚温室气体排放和每年产生 3 亿 GJ 可再生能源方面可以发挥的关键作用。该行业每年能够将超过 5000 万公吨的生物质转化为生物炭和可再生能源,与 ANZBIG 的路线图一致,提供了数十亿美元的机遇。博览会将展示生物炭解决方案如何有助于:
生物炭是一种类似木炭的物质,由木材、坚果壳、果壳或粪肥等生物质在低氧高温下燃烧而产生 (Spokas, 2020; Parikh 等人, 2020)。生物炭主要由碳组成,碳以多种黑碳化学形式存在,具体取决于原料的燃烧、冷却和/或储存方式。生物炭的使用可以追溯到数千年前,当时亚马逊盆地的土著人民生产生物炭并将其混入土壤中以提高土壤肥力和农作物产量 (Spokas, 2020)。如今,生物炭被用作土壤改良剂,用于封存碳、改善土壤健康和水分、提高土壤 pH 值和修复受污染的土壤 (Neukrich, 2022)。2018 年,美国生物炭行业估计,美国每年生产约 45,000 吨生物炭 (Groot 等人, 2018)。本方法论文件概述了边际减排成本曲线 (MACC) 的创建,该曲线模拟了美国大规模采用生物炭的温室气体减排潜力和相关成本,以及该分析的结果。
摘要:由不同生物量来源产生的生物炭,例如软木(松树,云杉,冷杉)和硬木(橡木,枫木,桦木,柚木),是厌氧消化的绝佳添加剂。松树(Pinus spp。)生物炭及其多孔结构是微生物附着和改善甲烷产生的理想选择。云杉(picea spp。)Biochar以其较大的表面积认可,可增强微生物相互作用并加速气体的产生。橡木(quercus spp。)生物炭对稳定性有重大影响,并防止pH的极端波动,可能会对消化产生不利影响。枫(Acer spp。)生物炭有助于促进电子传输,以实现最佳的AD操作。fir(abies spp。)生物炭增强了养分的保留,同时支持微生物的生长,从而带来了相对稳定的消化环境。最近,还发现了生物炭对沼气产量降低和稳定沼气产量的影响,除了一般改善基于柚木的生物炭的系统性能以进行AD。关键字:厌氧消化,生物炭,甲烷产生,微生物支撑,pH稳定,缓解氨。
本文的目的是总结生物炭在尾矿土壤中的重金属中应用的研究进度。通过梳理和分析相关文献,本文总结了生物炭的制备和影响因素,其主要特性,补救泥浆重金属污染和修复机制的效果,以及生物炭在尾矿土壤中重金属的补救中的应用。研究表明,生物炭具有良好的吸附和重金属的钝化,这可以显着减少土壤中重金属的含量,从而改善土壤环境。但是,研究中存在某些缺点,例如需要进一步研究生物炭的老化,再生和经济。因此,未来的研究应深入研究生物炭在土壤重金属修复中的最佳条件,经济可行性和技术应用,以期提供新的想法和方法,以修复尾矿土壤中重金属污染的方法。
摘要:重金属离子和农药的生物修复既经济又环保。微生物修复被认为优于传统的非生物修复工艺,因为它具有成本效益、减少生物和化学污泥、对特定金属离子具有选择性以及在稀释废水中的高去除效率等优点。以生物炭为载体的固定化技术是推进微生物修复的重要方法之一。本文概述了生物炭基材料,包括其设计和生产策略、物理化学性质以及作为微生物吸附剂和载体的应用。本综述还概述了能够应对进入环境的各种重金属离子和/或农药的微生物。农药和重金属的生物修复会受到微生物活动、污染物的生物利用度以及 pH 值和温度等环境因素的影响。此外,通过阐明相互作用机制,本文总结了重金属和农药的微生物修复。在这篇综述中,我们还整理并讨论了利用生物炭和微生物进行各种生物修复策略的研究成果,以及生物炭上固定化细菌如何有助于改进生物修复策略。本文还总结了农药和重金属的来源和危害。最后,基于上述研究,本研究概述了该领域的未来发展方向。
本研究考虑了生物精炼的关键阶段,研究了大型藻类(Ulva ohnoi)的潜在循环经济方法。研究和报道了生物质干燥、生物炭生产(热解)和应用生物炭除磷等重要阶段。值得注意的是,将大型藻类生物质从平均湿基含水量约 70-85% 干燥至适合热转化的含水量约 10% 是一项艰巨的任务。对生物质和生物炭的物理化学性质进行了表征,并将其与它们吸附磷 (P) 的能力相关联。大型藻类生物质的初步热分析表明,主要重量损失发生在 150 至 550°C 之间。热解过程动力学表明需要 232 至 836 kJ mol − 1 之间的更高表观活化能。当热解过程的温度升高时,可以发现生物炭的孔径、表面积和孔体积增加。在批量实验中,在 700°C 下获得的生物炭的 P 吸附量最高(78 mg-P/g 生物炭),这可能是由于碱金属和碱土金属的可用性。拟二级模型很好地描述了 P 吸附的动力学研究。由大型藻类生物质生产的生物炭可被视为对环境有益且低成本的磷回收吸附剂。吸附后的生物炭由于含有大量的磷磷石,可在农业中用作缓释肥料。
Biochar是一种源自有机生物量热解的富含碳产品,已成为园艺中有希望的土壤修正案,具有增强土壤健康和植物生长的巨大潜力。其独特的特性,包括高孔隙率,较大的表面积和稳定的碳含量,使其成为改善土壤结构,保留水和养分的有效工具。本摘要回顾了生物炭在园艺中的应用,重点是其对土壤健康和植物生产力的好处。在园艺系统中,已经证明生物炭修订可改善土壤物理特性,例如增加土壤曝气和养水能力,这对于根源发育和植物健康至关重要。生物炭还通过增加阳离子交换能力(CEC)来增强土壤化学特性,从而改善养分保留率并减少浸出损失。这些改进可以提高养分效率的更好,并可以减少对化肥的需求,从而使园艺实践更加可持续。此外,生物炭积极影响土壤生物学活性。它为有益的土壤微生物提供了一个栖息地,增强了微生物的多样性和活性,从而促进了营养循环和植物的生长。研究表明,生物炭可以减轻土壤传播的疾病并减少植物病原体的发生,从而有助于更健康,更弹性的作物。生物炭在园艺中的应用还提供了环境效益。它可以延长土壤中的碳长期,从而通过减少温室气体排放来促进气候变化。此外,通过利用农业和林业残留物进行生物炭生产,废物管理得到改善,并促进了循环经济。