项目描述:石油 - 帕尔姆是世界上生产力最高的石油作物,能够满足人类食品和能源需求。令人震惊的是,土地转换为石油 - 与生物多样性丧失,区域性大火,有毒 - 热情和温室气体排放有关。在石油帕尔姆种植园生命周期结束时采用了诸如斜线燃烧之类的非法实践,作为清除土地并通过提高pH和养分的供应量来提高泥炭的易耕作的一种简单手段。但是,由于矿物的浸出,这些好处是短暂的。另一方面,在现场保留石油 - 粉状废物以增强造成重大棕榈损失的Ganoderma真菌的扩散。在这里,我们提出了从石油 - 帕尔姆(Oil-PALM)和将油帕尔姆(Oil-Palm)领域重新应用的生物炭生产,以解决这些相交问题的解决方案。马来西亚目前的大部分石油 - 正在过渡到第二代种植周期,这为评估这种方法的潜力提供了理想的机会。
生物炭是使用受控火灾,将森林斜线,木材收获残留物,损坏的树木和多余的刷子转换成稳定的富碳木炭的生产,可以保留在森林土壤中。正如威尔逊生物炭合作伙伴和其他生物炭研究人员所记录的那样,使用便携式火焰盖窑(如《伍兹演示报告》中的生物炭中所述)允许有效的,就地的生物炭生产,从而为传统的施加施用提供了巨大的生态益处(Wilson,K.J.,K.J.(2024))。这种方法不仅可以减少有害的颗粒物排放,还可以保留土壤的有机层,否则这些层被烧伤和野火焚化。
摘要:厌氧消化(AD)用于治疗由于人口增长和全球经济的扩展而产生的市政固体废物(MSW)的不断增长的有机分数。广泛应用AD导致残留固体消化不断增加,这必然需要进一步处置。有必要提高广告效率并降低大量消化率。这项研究研究了在不同的热解温度(300℃,500℃和700℃)以及500℃下的玉米毒生物炭及其对AD性能的影响。生物炭的pH值随着热解温度的升高而增加,而电导率则降低。大孔主导了生物炭的孔径,并随着热解温度的升高而降低。生物炭制备温度显着影响了效率。在700℃制备的生物炭胜过其他组,将沼气产量提高了10.0%,有效地缩短了滞后时间,并将平均化学氧需求(COD)降解率提高了14.0%。添加生物炭(700°C)和玉米秸秆生物炭增加了挥发性脂肪酸(VFAS)氧化细菌的相对丰度,从而加快了AD系统中的酸转化率。Biochar促进了直接种间电子的电子传递,在DMER64和Trichococcus之间使用甲烷萨塔,从而增强了沼气的生产性能。这些发现证实了源自消化酸盐的生物炭促进了MSW的AD系统中的沼气产生和酸的转化。此外,生物炭具有改进的AD稳定性,这代表了回收消化酸盐的有前途的方法。
简介生物炭定义为在受控的氧气水平下,将生物量加热到350°C以上的温度以防止燃烧而产生的固体材料。预计将具有诸如土壤改善,农业生产率提高和土壤中的碳固存。近年来,使用生物炭的碳固换引起了人们的关注,这是从大气中促进二氧化碳(CDR)的技术之一,从而在该领域进行了积极的研究。在2019年,IPCC(气候变化的政府间小组)改进了指南,包括一种计算生物炭到农业和草地土壤中的碳隔离的方法。因此,使用生物炭的碳固换已被全球识别为CDR技术。此外,还在扩大生物炭的使用方面正在进行高性能生物炭的研究和开发,既可以实现高碳固执效率,又可以提高农业生产力。此类研究需要评估生物炭中的总有机碳(TOC)含量和TOC固体样品测量系统,该系统由Shimadzu TOC TOC TOC TOC总有机碳分析仪与SSM-5000A实心样品燃烧单元相结合。本文提出了使用Shimadzu TOC Solid样品测量系统评估生物炭的TOC含量的示例。
GreenChar 是使用 SyngaSmart 技术生产的生物炭的名称,其特点是孔隙率高、碳浓度高。生物炭不仅代表了再生农业的有前途的工具,也是来自大气 CO2 的碳的浓缩物:生产和使用生物炭可以在农业用地上创建“工程”碳汇,其碳吸收效果与植树相同。然而,生物炭的优点之一是其碳含量稳定,不会与氧气发生反应,因此不会分解。这解释了为什么生物炭具有将大气中的碳锁定数个世纪的独特潜力,并且是仅有的三种已知安全且经济有效的碳吸收方法之一(土壤碳和碳林业)。政府间气候变化专门委员会 (IPCC) 也证实了这一点,该委员会在 2018 年 10 月 8 日发布的一份特别报告中首次将生物炭列为有前途的负排放技术 (NET)。
该研究旨在调查M20级混凝土使用生物炭和铁矿石尾粉(ITP)的CO 2序列能力。通过缓慢的玉米毒酸性热解制备生物炭。将所获得的生物炭分为两个系列未经处理的生物炭,并通过加热进行预处理,直到燃烧。在0%,5%,10%和15%的情况下,混凝土中的细骨料被代替。通过压碎和筛分铁矿石废物获得的铁矿石尾粉。将水泥以0%,25%和50%的重量代替ITP。水与粘合剂比保持在0.45,在超增塑剂的帮助下保持混凝土的可工程性。进行了抗压强度测试,CO 2摄取,孔隙率和汞侵入孔隙测试,以了解混凝土中生物炭和ITP的影响。测试结果表明,含有25%ITP替代的预处理的生物炭的混合物具有最大CO 2隔离能力,而不会损害其强度特性。
澄清:《生物炭方法论》 2022年在规则1.1.7中定义了本地管辖权要求比其他建议占上风。如果存在国家或以下法规,并且不需要对土壤应用的生物炭进行PAH测试,则本地生物炭生产商可以遵循该国家或次国国家的规定。我们对美国的解释是,《国家法规法》第336条超过了IBI指南,因此,如果USDA用于土壤应用,则不需要PAHS测试。但是,请注意,USDA代码336法规特定于生物炭应用于土壤作为直接修正或共同订立的土壤,但它不适用于动物饲料,然后我们需要根据EBC基准进行PAHS测试。结论,与其他建议相比,对生物炭的PAH测试的当地管辖权要求。
澄清:《生物炭方法论》 2022年在规则1.1.7中定义了本地管辖权要求比其他建议占上风。如果存在国家或以下法规,并且不需要对土壤应用的生物炭进行PAH测试,则本地生物炭生产商可以遵循该国家或次国国家的规定。我们对美国的解释是,《国家法规法》第336条超过了IBI指南,因此,如果USDA用于土壤应用,则不需要PAHS测试。但是,请注意,USDA代码336法规特定于生物炭应用于土壤作为直接修正或共同订立的土壤,但它不适用于动物饲料,然后我们需要根据EBC基准进行PAHS测试。结论,与其他建议相比,对生物炭的PAH测试的当地管辖权要求。
“Advancing the use of biochar in the building industry: a multi-stakeholder study” https://www.ukri.org/news/first-projects-from-ukris-new-interdisciplinary-scheme-announced/ is an £0.8M project awarded to a research team attached to Heriot-Watt University, Aston University and the University of Birmingham and funded through the UKRI跨研究委员会响应模式(CRCRM)计划。该项目设想通过多利益相关者的方法来提高生物炭及其商业,健康的收入潜力,碳信用额和环境利益的水平。该项目的目的包括识别适当的生物炭,以用作建筑材料,分析生物炭胶合物复合材料的能量性能和碳降低潜力;采用综合多方利益相关者方法来共同创建定性和定量指标,从而从整体上表达建筑物中生物炭的价值;对生物炭复合材料进行生命周期分析,以实现碳信用额和环境利益;并提供一个在建筑行业中采用生物炭的决策支持框架,并提出的指标将可以转移到其他新材料。