摘要 - 视觉控制策略在视觉条件(如照明或摄像机位置)与训练过程中所见的情况有所不同时可能会遇到重大的性能降解 - 通常甚至在较小的差异方面表现出急剧下降的能力。在这项工作中,我们研究了基于RGB-D和基于点云的视觉控制策略的这些类型的视觉变化的鲁棒性。要对基于模型和基于模型的强化学习者进行这些实验,我们引入了一种新颖的Point Cloud World Model(PCWM)和基于点云的控制策略。我们的实验表明,明确编码点云的策略比其RGB-D对应物更强大。此外,我们发现我们提出的PCWM在训练过程中的样本效率方面显着优于先前的工作。在一起,这些结果表明,通过点云进行有关3D场景的推理可以提高性能,减少学习时间并增加机器人学习者的鲁棒性。项目网页:https://pvskand.github.io/projects/pcwm
扩散模型(DMS)已经实现了最新的(SOTA),从而导致LIDAR点云生成任务,从而受益于他们在抽样过程中稳定的训练和迭代精炼。但是,DMS由于其固有的降解过程而经常无法实际对LiDAR Raydrop噪声进行建模。为了保留迭代采样的强度,同时增强了射线噪声的产生,我们引入了Lidargrit,这是一种生成模型,该模型使用自动回应变压器在潜在空间而不是图像空间中迭代采样范围图像。此外,lidargrit还利用VQ-VAE分别解码范围和射线罩。我们的结果表明,与Kitti-360和Kitti Odometry数据集中的SOTA模型相比,Lidargrit的性能表现出色。代码可用:https://github.com/hamedhaghighi/lidargrit。
2024年6月19日 — (4)防卫政策局局长、采购、技术和后勤局局长或陆上自卫队参谋长...... (3)设计文件中指定的标有JIS或JAS标记的材料或标准、准则等......
5'-tcctaggtataAtaTaCtaAgtaAgcagggGACTAACATGTGGTGGTTTTTTAGAGCTAGAAATAGC-3'
摘要:铁路场景的理解对于各种应用程序至关重要,包括自主火车,数字缠绕和基础设施变更监控。但是,后者的开发受到现有算法缺乏注释的数据集和局限性的限制。为了应对这一挑战,我们提出了铁路3D,这是铁路环境中语义细分的第一个综合数据集,并进行了比较分析。Rail3D涵盖了来自匈牙利,法国和比利时的三种不同的铁路环境,捕获了各种各样的铁路资产和条件。有超过2.88亿个注释点,Rail3D超过了大小和多样性的现有数据集,从而可以训练可概括的机器学习模型。我们进行了一个通用的分类,该分类使用了九个通用类(地面,植被,铁路,电线,信号,围栏,安装和建筑物),并评估了三种最先进模型的性能:KPCONV(内核点卷积),LightGBM和随机森林。最佳性能模型,一种经过的kPCONV,在联合(MIOU)上达到了平均值为86%。基于LightGBM的方法获得了71%的MIOU,但表现优于随机森林。这项研究将通过为3D语义细分提供全面的数据集和基准,从而使基础设施专家和铁路研究人员受益。数据和代码可公开用于法国和匈牙利,并根据用户反馈进行连续更新。
摘要 - 通常在临床实践中使用的心脏功能的全球单值生物标志物,例如射血分数,提供了对真实3D心脏变形过程的有限见解,因此限制了对健康和病理心脏力学的理解。在这项工作中,我们提出了点云变形网络(PCD-NET),作为一种新型的几何深度学习方法,用于模型3D心脏收缩和心脏周期的极端之间的放松。它在基于点云的深度学习中采用了最新的进步,成为编码器解码器的编码器结构,以实现有效的多尺度特征学习,直接在心脏解剖的多级3D点云表示上。我们在英国生物银行研究的10,000多个案例的大数据集上评估了我们的方法,并在基本图像获取的像素分辨率下方的预测和地面真相解剖结构之间找到平均的倒角差异。此外,我们观察到了预测和地面真理人群之间的类似临床指标,并表明PCD-NET可以成功捕获正常受试者和肌肉拨动梗塞(MI)患者之间的亚群特异性差异。然后,我们证明,在接收器操作特征曲线下,学到的3D变形模式在接收器操作特征曲线下,在Harrell的一致性INDEX进行MI生存分析方面,在接收器操作特征曲线下的面积优于13%和7%。
[dbscan] Ester等。:“一种基于密度的算法,用于在具有噪声的大空间数据库中发现簇”。:KDD,1996年。[DGCNN] Wang等。:“用于在点云上学习的动态图CNN”。in :( tog),2019年。[Kabsch] W. Kabsch:“解决两组向量的最佳旋转解决方案”。in:晶体物理学,衍射,理论和一般晶体学,1976年。[Hregnet] Lu等。:“ Hregnet:用于大规模室外激光点云注册的分层网络”。in:(iccv),2021。[Randla-net] Hu等。:“ randla-net:大规模点云的有效语义分割”。in:(cvpr),2020。[Stereokitti] Menze等。:“自动驾驶汽车的对象场景流”。in:(cvpr),2015年。[Lidarkitti] Geiger等。:“我们准备好进行自动驾驶了吗?Kitti Vision基准套件”。in:(cvpr),2012年。[Semkitti] Behley等。:“ Semantickitti:用于LIDAR序列的语义场景的数据集”。in:(ICCV),2019年。[FT3DS] Mayer等。:“一个大型数据集来训练卷积网络以差异,光流和场景流量估计”。in:(cvpr),2016年。[pointpwc-net] Wu等。:“ PointPWC-NET:(自我监督场景流估计)点云上的成本量”。在:(ECCV),2020年。[FlowStep3d] Kittenplon等。:“ FlowStep3d:自我监督场景流估计的模型展开”。in:(cvpr),2021。[RMS-FLOWNET] Battrawy等。:“ RMS-FLOWNET:大规模点云的高效且稳健的多尺度场景流程估计”。in:(icra),2022。[WM3D] Wang等。:“对于3D场景流网络重要的东西”。in:(ECCV),2022。[Bi-Pointflownet] W. Cheng和J. Hwan Ko:“基于点云的场景流估计的双向学习”。in:(ECCV),2022。[Chodosh等人]Chodosh等。:“重新评估激光雷达场景以进行自动驾驶”。in:arxiv,2023。[WSLR] Gojcic等人。:“严格3D场景流的弱监督学习”。in:(cvpr),2021。[ERC] Dong等。 :“利用震子场景流量估计的刚性约束”。 in:(cvpr),2022。[ERC] Dong等。:“利用震子场景流量估计的刚性约束”。in:(cvpr),2022。
1。ST Microelectronics completes acquisition of Norstel AB, a SiC wafer manufacturer, ST Microelectronics, 2019/12/2: https://www.st.com/content/st_com/ja/about/ media-center/press-item.html/c2930.html 2.ROHM集团Sicrystal和St Microelectronics同意提供碳化硅(SIC)Wafers多年来,ST Microelectronics,2020/1/15:https://newsroom.st.com/ja/ja/ja/media-ia-center/media-center/press-center/press-item/press-item.html/c2936.html,3。3.cree |。ST Microelectronics在意大利建立了新的集成SIC WAFER工厂,ST Microelectronics,2022/10/5:https://newsroom.st.com/ja/ja/media-center/media-center/press-item.htm.html/ c3124.html 5。Stmicro在意大利建立新的SIC WAFER工厂,在欧洲首次,Nikkei Crosstech,2022/10/18:https://xtps://xtech.nikkei.com/atcl/news/news/news/news/news/13938/13938/ 6.Infineon和Cree同意长期供应Sic Wafers,Infineon,2018/3/16:https://www.infineon.com/cmms/cmms/jp/jp/jp/jp/about-infineon/press/press/press/press/press/press/press/press-releases/2018/2018/Wolfspeed builds a new large-scale SiC factory in Germany, production begins in 2017, Nikkei Crosstech, 2023/2/28: https://xtech.nikkei.com/atcl/nxt/news/18/14642/ 8.Infineon收购了硅碳化物专家Siltechtra,Infineon,2018/12/7:https://www.infineon.com/cms/cms/cms/jp/jp/about-infineon/press/press/press/press/press-releases/2018/2018/2018/Infineon通过GT Advanced Technologies,Infineon,2020/11/9:https://wwwww.infineon.com/cms/cms/cms/jp/jp/about-infineon/ press/press/press/press/press/2020/infxx20202011-2011-2011-2011-014.html 10。有关电力半导体的SIC外延晶片:与Infineon Technologies签署的销售和联合开发协议,Showa Denko,2021年5月6日:https://wwwwww.resonac.com/jp/
• 制造商等因交付的产品存在缺陷,导致他人生命、身体或财产受到损害的,应承担赔偿责任(《产品责任法》第 3 条)。第 2 条) • “缺陷”是指产品缺乏“通常应当具备的安全性”(《产品责任法》第2条第2款)