第I部分:关于赠款机会3有关儿童伙伴关系4的概述3点飞行员演示目的4时间表和赠款申请平台5授予奖励金额6授予金额6技术援助6学习社区7第II部分:授予要求7授予申请7资格伙伴关系7授予者参与者参与者7授予者申请人的要求9授予者9初始申请书8 partitigity 8 partitigity 8 partitigity 8 partitigity 8 partitigity 8 partitigity 8 partiguition 8 A学校叙述9 B.学生人口人群数据10 C.学生健康与福祉人群数据10 D.编程叙事10个点对点程序/模型11的示例。提出的计划模型12F。拟议的预算叙述12第四部分:选择过程13申请里程碑14住宿14申请人支持和询问14
摘要 — 微电网是能源网络的主要组成部分,因为它们可以容纳大量可再生能源。点对点能源交易是实现电力市场分散模式的最有效方法之一。在点对点交易中,每个参与者直接与一组合作伙伴进行谈判,无需任何中介。点对点能源交换方法允许生产者和消费者之间直接进行能源交换。本研究在由 4 个微电网组成的网络上测试了点对点交易方法。现有的微电网有不同的发电源,如太阳能、风力涡轮机和微型涡轮机,每个发电源都单独建模。此外,为了减少可再生能源生产的不确定性,该网络中使用了电池存储系统。此外,为了鼓励微电网使用可再生资源,这些资源已经考虑了截止成本。本研究使用约束优化方法和带有 Baron 求解器的 GAMS 软件来优化问题。最后,利用信息差距决策理论方法考察了不同模式生产可再生资源的不确定性。可用的结果显示了基于目标函数和现有约束的微电网与其他网络组件之间的功率分配。
摘要 — 微电网是能源网络的主要组成部分,因为它们可以容纳大量可再生能源。点对点能源交易是实现电力市场分散模式的最有效方法之一。在点对点交易中,每个参与者直接与一组合作伙伴进行谈判,无需任何中介。点对点能源交换方法允许生产者和消费者之间直接进行能源交换。本研究在由 4 个微电网组成的网络上测试了点对点交易方法。现有的微电网有不同的发电源,如太阳能、风力涡轮机和微型涡轮机,每个发电源都单独建模。此外,为了减少可再生能源生产的不确定性,该网络中使用了电池存储系统。此外,为了鼓励微电网使用可再生资源,这些资源已经考虑了截止成本。本研究使用约束优化方法和带有 Baron 求解器的 GAMS 软件来优化问题。最后,利用信息差距决策理论方法考察了不同模式生产可再生资源的不确定性。可用的结果显示了基于目标函数和现有约束的微电网与其他网络组件之间的功率分配。
概括。十多年前,各种允许个人管理住宿的平台的出现彻底改变了旅游业。旅游住宿方式已发生深刻变革,并且这种变革将持续下去。近年来,Airbnb 等平台的出现改变了个人之间管理替代住宿的方式。最初,这些平台被认为是将社会层面置于经济中心的“协作经济”的一个例子。但近年来,越来越多的专业房产管理机构也开始在平台上推广其房产,这使得原本平等的协同消费理念以及与社交经济理念的互补性受到了质疑。在这项研究中,我们分析了 Airbnb 在西班牙 10 个城市和地区提供服务的专业化水平,目的是了解其是否符合协作经济的原则。具体来说,我们研究了 Airbnb 的行业结构,即拥有多个房源的专业代理商和拥有单个房源的私人业主之间的结构差异。此外,我们旨在衡量 COVID-19 疫情的影响是否影响了这种结构,是否在高度专业化的代理商之间或 Airbnb 上单个房源的私人业主之间引起了不同的反应。本研究还对 2016 年至 2020 年期间马德里的情况进行了深入研究。关键词:协作经济;社会经济; Airbnb;专业化;城市研究。 Econlit 钥匙:B55; D16; O18。
摘要遗传修饰(GM)猪的产生被认为是在生物医学研究中为各种疾病和猪开发具有抗病毒感染的动物模型动物的有价值的。可以使用几种方法(例如,使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC)在受精的卵中直接注射到Zygotes中,使用Zygots,使用Zygote的体外电rOpration(Ep)在Zygote中,gecots restrone gececs,gecots,可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。 在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪可以使用几种方法,例如使用GM细胞作为SCNT供体,直接注射转基因或基因组编辑成分(GEC),使用Zygotes,使用Zygots的体外电型(EP)在Zygote中,gecots,gecots refofter(ep) GEC进入经过SCNT处理的胚胎,并在GEC存在下经过SCNT处理的胚胎的体外EP。在我们先前的研究中,我们对基于CRISPR/CAS9的GEC进行了细胞质注射到孤态激活的猪
CESC 是印度第一家自 1899 年以来完全整合的电力公用事业公司,在加尔各答和豪拉发电和配电。与 ISGF 和 Powerledger 合作的试点项目的总体目标是探索和开发适合平台即服务的商业模式。该平台即服务计划作为加尔各答可扩展的区块链点对点 (P2P) 能源交易平台提供给 CESC 客户,该平台可在 CESC 产品组合中提供。该试点旨在启用 Powerledger 的点对点交易平台,并使用 1,000 个可通信型仪表运行为期 6 个月的试点。该试点执行了各种试点测试场景,包括固定 P2P、优惠和动态价格交易场景。该试点还评估了 DISCOM (CESC)、产消者和消费者的利益。该项目于 2022 年 7 月上线,拥有 1000 多名产消者和消费者。
摘要—本文讨论了杜克能源、北卡罗来纳大学夏洛特分校 (UNCC) 和施魏策尔工程实验室公司 (SEL) 就输电变电站点对点数字二次系统 (P2P DSS) 设计进行的合作案例研究。P2P DSS 使用最简单的网络架构,其中合并单元 (MU) 使用光纤电缆直接连接到 P2P 继电器。本文讨论了在为某些电力系统配置设计 P2P DSS 时遇到的挑战,并提供了解决方案。根据设计,使用总设备数量、保护方案不可用性和保护系统运行速度作为标准,将 P2P DSS 与传统设计进行比较。杜克能源计划使用此案例研究的结果来评估其变电站的 P2P 技术。
人工智能 (AI) 的进步使系统能够增强并与人类协作,以执行简单的机械任务,例如安排会议和检查文本语法。然而,这种人机协作对更复杂的任务(例如进行共情对话)提出了挑战,因为人工智能系统在处理复杂的人类情感方面面临困难,并且这些任务具有开放性。在这里,我们专注于同理心对成功至关重要的同理心点对点心理健康支持,并研究人工智能如何与人类协作以在文本、在线支持对话中促进同理心。我们开发了 HAILEY,这是一种 AI-in-the-loop 代理,可提供即时反馈,帮助提供支持的参与者(同理心支持者)对寻求帮助的人(支持寻求者)做出更具同理心的回应。我们在大型在线点对点支持平台 TalkLife (N = 300) 上对现实世界的同伴支持者进行了一项非临床随机对照试验,以评估 HAILEY。我们表明,我们的人机协作方法使同伴之间的对话同理心总体上提高了 19.6%。此外,我们发现,在自我认定为在提供支持方面遇到困难的同伴支持者子样本中,同理心增加了 38.9%。我们系统地分析了人机协作模式,发现同伴支持者能够直接和间接地使用人工智能反馈,而不会过度依赖人工智能,同时报告反馈后的自我效能有所提高。我们的研究结果表明,反馈驱动的 AI 在环写作系统具有帮助人类完成开放式、社交性和高风险任务(例如同理心对话)的潜力。
摘要:能源互联网 (EI) 和智能电网 2.0 (SG 2.0) 概念是工业和研究领域的潜在挑战。SG 2.0 和 EI 的目的是实现创新电网运营的自动化。要从配电网络运营商 (DSO) 转向以消费者为中心的分布式电网管理,区块链和智能合约是适用的。区块链技术和集成 SG 将带来挑战,限制分布式能源资源 (DER) 的部署。本综述着眼于使用区块链技术实现智能电网 2.0 的去中心化。由于可以使用分布式能源和电力生产商以经济的方式出口剩余燃料,能源交易有所增加。能源交易系统成功地结合了来自多个来源的能源,以确保一致和最佳地使用可用资源并为能源用户提供更好的设施。点对点 (P2P) 能源交易是一个常见的研究领域,存在一些管理和技术困难。本文概述了 P2P 能源交换。它讨论了区块链如何提高透明度和整体性能,包括去中心化程度、可扩展性和设备可靠性。该研究还扩展到研究未来基于 P2P 区块链的能源共享的未解决问题和潜在方向。事实上,本文还展示了区块链在未来智能电网活动及其基于区块链的应用中的重要性。该研究还简要研究了与区块链集成相关的问题,确保未来自主电网的去中心化、安全和可扩展运行。
基本变化正在全球改变能源市场。分布式能源资源(DERS),例如光伏(PV)和风力发电机,以及储存设备的安装以不断提高的速率[1]。ders可以帮助减少排放,并实现许多国家根据《巴黎协定》 [2]承诺的减少碳目标。但是,大多数可再生能源的间歇性质为网络和系统运营商带来了挑战。保持能源供应和需求平衡会带来更大的挑战,因为可调度生成比例较低。同时,由于加热和运输的电化,需求可能会增加[3]。现有的能源市场应对这些新挑战的能力有限[4]。为避免高网格增强成本,并应对负载行为和数量的变化,新的市场和平衡机制的变化。本地能源市场(LEM)已成为促进更多DERS整合到电力系统中的领先方法[4]。LEM的目的是激励小型能源消费者,生产者和制造商在竞争市场中相互交流,并在当地的能源供应和需求平衡[5]。在本文献综述中,我们提供了对LEM市场设计和交易方面知识的系统化。我们旨在帮助该领域的研究人员了解所研究的LEM类型以及不同市场类型的细微差别。出现了三种不同类型的LEM。最近的几篇评论文章分析了LEM。首先,点对点(P2P)市场允许无需中介的能源直接交易。他们旨在为能源用户提供积极参与能源市场的动力[6]。其次,社区或集体自我消费(CSC)是在共同存在的能源生产商在市场安排中交易其盈余能源的时候[7-9]。术语CSC源于侧重于授权能源用户权能的监管环境[7]。其定义是参与者活动的集合,而不是组织市场结构[8]。最后,通过分散协调的交易能源(TE)在电力系统中的平衡供求[10]。TE市场的目的是使用价格信号以自动方式管理分散资源以提供系统稳定性[11]。虽然三种市场具有共同的特征,但它们在规模,运营规模和主要交易目的方面具有不同的特征。在当前文献中,这些LEM类型可互换使用,在其含义和市场类型之间的差异方面缺乏共识。[12]审查当地能源交易的市场设计,专注于可伸缩性,间接费用及其如何解决网格约束。[13]审查P2P电力交易技术,概述了它们的关键功能以及它们给电网和造物的好处。他们的重点是市场清除机制。类似地,[14]对市场设计和清算方法进行分类和组织文献,重点是本地灵活性市场。[15]审查LEM的重点是市场的四个关键属性:范围,建模假设,目标和机制。[16]审查以消费者为中心的电力市场,整合了所有的行为