自适应突变现象在进化论社区中一直吸引生物学家的注意。在这项研究中,我们根据开放量子系统理论的含义提出了一种自适应突变的量子机械模型。我们调查了一个新框架,该框架解释了如何稳定和指示随机点突变,以根据量子力学约束所规定的微观规则来适应环境引入的应力。我们考虑了一对纠缠量子台由DNA和mRNA对组成,每个量子对使用了一个不同的储层,用于分析使用时间依赖的扰动理论分析纠缠的串扰。储层分别是细胞质和核质和mRNA和DNA周围环境的物理表现。我们的预测证实了适应性突变的环境辅助量子进展的作用。将同步计算作为确定双方DNA-mRNA可以通过纠缠相关的度量。防止纠缠损失对于控制环境影响下的不利点突变至关重要。我们探讨了哪些物理参数可能会影响DNA和mRNA对系统之间的纠缠,尽管与环境相互作用具有破坏性作用。
摘要虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍缺乏一种有效的方法来产生高效率的精确点突变。在这里,我们表明基本编辑者可以在没有其他不必要的靶向突变的情况下生成具有高效率的C-T点突变。此外,我们还建立了一个新的编辑变体,以识别NAA原始探针相邻基序,从而扩大了斑马鱼中的基本编辑可能性。使用这些方法,我们首先在CTNNB1基因中产生了基本变化,模仿了已知的人类基因的突变,从而导致内源性Wnt信号传导的组成型激活。此外,我们精确地针对了包括癌症相关的几个基因,包括CBL。使用了最后一个目标,我们创建了一个新的斑马鱼矮人模型。一起,我们的发现扩大了斑马鱼作为模型系统的潜力,允许新的方法调节细胞信号通路和人类遗传疾病相关突变的精确模型的生成。
摘要 虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍然缺乏高效产生精确点突变的有效方法。在这里,我们展示了碱基编辑器可以高效地产生 C 到 T 的点突变,而不会产生其他不必要的靶向突变。此外,我们建立了一种识别 NAA 原型间隔区相邻基序的新编辑器变体,扩展了斑马鱼的碱基编辑可能性。利用这些方法,我们首先在 ctnnb1 基因中产生了碱基变化,模仿已知会导致内源性 Wnt 信号组成性激活的人类基因致癌突变。此外,我们精确靶向了包括 cbl 在内的几种癌症相关基因。利用最后一个目标,我们创建了一种新的斑马鱼侏儒症模型。我们的研究结果共同扩展了斑马鱼作为模型系统的潜力,为内源性调节细胞信号通路和生成人类遗传疾病相关突变的精确模型提供了新方法。
为SpCas9 经过一个点突变(D10A),此突变会导致Cas9 只能进行单股核酸裁切(SSB)。使用上必须同时引入两段gRNA,辨认邻近的区域( 需要是DNA 双股各一股),造成两个邻近的单股DNA 断裂,才能够引发NHEJ,造成基因缺失,因此可以大幅度降低off-target, 增加专一性。
同源重组介导的基因组编辑,也称为基因靶向(GT),是一种必不可少的技术,允许对目标序列进行精确的修改,包括引入点突变,报告基因的敲入和/或交换功能域。然而,由于其低频,很难建立可以广泛应用于大量植物物种的GT方法。我们开发了一种简单且通用的定期间隔短的短粒子重复序列(CRISPR)/CRISPR相关的蛋白9(CAS9)介导的DNA双重链突破(DSB)诱导的GT系统,使用包含CRIS CRIS/CAS9表达构造的多一对矢量,可供选择的标记和GT Donor donor donor template。该系统启用了具有不可选择的特征的目标点突变,以大米和烟草中的几个靶基因。可以精确地使用该系统评估内源性靶基因的GT频率,因此我们研究了用RAD51刺激化合物1(RS-1)处理对DSB诱导GT频率的治疗的影响。GT频率略有但始终如一,通过RS-1处理在两个目标植物中都得到了改善。
摘要:定点 RNA 编辑 (SDRE) 技术在治疗点突变引起的遗传疾病方面具有巨大潜力。我们小组和其他研究人员已经开发出利用作用于 RNA 的腺苷脱氨酶 (ADAR) 和引导 RNA 招募 ADAR 来靶向带有点突变的 RNA 的 SDRE 方法。一般来说,有效的 SDRE 依赖于引入相对于靶基因的大量引导 RNA。然而,对于基因治疗应用来说,实现较大的比例是不可能的。为了实现现实的比例,我们在此开发了一种系统,该系统可以使用由 ADAR 片段组成的融合蛋白和在单个构建体上包含每个基因一个拷贝的质粒载体将相等数量的基因和引导 RNA 引入培养细胞。我们将单个构建体转染到 HEK293T 细胞中并实现了相对较高的效率(高达 42%)。结果表明,当所有三个因素(靶基因、引导 RNA 和 ADAR 酶)的拷贝数相似时,可以实现有效的 SDRE。该方法有望在体内实现高效的基因修复,从而可应用于基因治疗。
摘要:从CRISPR/CAS9发现得出的主要编辑技术允许在特定基因中对选定的核苷酸进行修改。我们用它在外显子9、20、35、43、55和61中插入了特定的点突变,该基因肌营养不良蛋白编码为肌营养不良蛋白,该基因在DMD患者中不存在。分别用Prime Editor 2(PE2)和PE3获得了HEK293T细胞中DMD基因的11%和21%所需的突变。三种重复治疗将PE2的特定突变的百分比增加到16%。在单次治疗后,原始的邻接基序(PAM)序列中的额外突变提高了PE3结果至38%。我们还对患者成肌细胞中DMD基因的外显子6中的外显子6中的c.428 g>进行了校正。成肌细胞电穿孔分别显示高达8%和28%的修饰。成肌细胞校正导致通过蛋白质印迹检测到的肌管中肌营养不良蛋白的表达。因此,可以使用序数编辑来校正DMD基因中的点突变。
通过产生突变来调节基因活性对理解蛋白质功能做出了重大贡献。然而,突变分析通常使用过表达研究,其中蛋白质脱离了其正常的环境和化学计量。在目前的研究中,我们试图开发一种方法,同时使用 CRISPR/Cas9 和 Cre-Lox 技术来修改内源性 SAT1 基因,以引入蛋白质的突变形式,同时仍受其天然基因启动子的控制。我们通过转录终止元件克隆了野生型 (WT) SAT1 的 C 末端部分,并在关键结合位点包含点突变的相同版本 SAT1 前面与 LoxP 位点相邻。在 CRISPR/Cas9 诱导的 DNA 双链断裂后,通过非同源末端连接 (NHEJ) 将构建体插入内源性 SAT1 基因座。在确认插入事件不会改变 SAT1 的正常功能后,我们便能够通过引入 Cre 重组酶来评估点突变的影响。因此,该系统能够生成内源性 WT SAT1 可以有条件地修改的细胞,并允许在正常启动子和染色质调节的背景下研究位点特异性突变的功能后果。
CRISPR-Cas9 介导的诱导多能干细胞基因编辑成为一种有效的工具,可用于研究遗传驱动疾病的生物学机制,同时考虑各自的遗传背景。该技术依赖于针对目标基因中存在的特定核苷酸序列。因此,某些基因的基因编辑可能因非编码假基因而变得复杂,这些假基因与其各自的基因具有高度的序列同源性。其中,GBA 引起了特别的关注,因为它是帕金森病最常见的遗传风险因素。在本研究中,我们提出了一种易于使用的 CRISPR-Cas9 基因编辑策略,允许对基因中的点突变进行特定编辑,而无需对其假基因进行遗传改变,例如在 GBA 中纠正或插入常见的 N370S 突变。通过结合荧光和 PCR 筛选的质量控制策略,可以早期识别正确编辑的克隆,并明确识别其假基因 GBAP1 的状态。功能验证证实基因编辑成功。我们的工作首次基于 CRISPR-Cas9 对 GBA 中的点突变进行编辑,并为由于存在假基因而技术要求高的基因工程铺平了道路。
在INAD患者中观察到的PLA2G6突变是多种多样的,包括错义,胡说八道和剪接位点突变,以及小插入和缺失。这些突变导致酶活性完全丧失或其功能降低。功能障碍的程度与疾病的严重程度和发作相关。纯合或复合杂合突变通常在受影响的个体中观察到,突出了INAD的常染色体隐性遗传模式。