摘要:RNA 编辑旨在通过改变转录水平的基因表达来治疗遗传疾病。将定点 RNA 靶向机制与工程脱氨酶配对,可以可编程地校正 RNA 中的 G > A 和 T > C 突变。这为一系列遗传疾病提供了一种有前途的治疗方法。对于由大基因点突变引起的遗传性视网膜变性(不适合单腺相关病毒 (AAV) 基因治疗,例如 USH2A 和 ABCA4),校正 RNA 提供了一种基因替换的替代方法。由于对 RNA 进行的编辑具有短暂性和潜在可逆性,因此 RNA 而不是 DNA 的基因组编辑可能提供更好的安全性。本综述考虑了当前的定点 RNA 编辑系统,以及将其转化为临床治疗遗传性视网膜变性的潜力。
蛋白激酶是一种将磷酸盐转移到蛋白质上的酶,可导致蛋白质发生修饰。人类基因组编码了大约 538 种激酶。激酶在维持许多细胞过程方面发挥着作用,包括控制细胞周期、代谢、存活和分化。蛋白激酶失调会导致多种疾病,并且已证明许多激酶在癌症中失调。这些激酶的致癌潜力因多种过程而增加,包括过度表达、重新定位、融合点突变和上游信号传导中断。对激酶机制或作用的了解已导致大量具有良好临床益处的激酶抑制剂的开发。在这篇综述中,我们讨论了 FDA 批准的激酶抑制剂及其机制、临床益处和副作用,以及克服某些副作用的挑战和新激酶抑制剂发现的未来前景。
为了表征HNSCC的蛋白质蛋白质间相(PPI)景观,我们基于从HNSCC肿瘤的癌症基因组图谱分析中鉴定出的分子途径选择了蛋白质。基于具有相对点突变的基因或与HNSCC的先前发表的关联添加了其他细节。pik3ca(编码腓骨phoinonositide 3-激酶的α催化亚基的基因)是HNSCC中最常见的突变癌基因,尽管研究了一些规范性突变,但许多非骨突变的理解较少。我们对三个细胞系进行了质谱净化 - 质谱法(AP-MS)分析,用于HNSCC中经常改变的31个基因以及16个PIK3CA突变。两条线是HNSCC细胞系,带有HNSCC患者的RNA谱曲线,一条是食管,非肿瘤性细胞系。
使用CRISPR/CAS9系统进行基因编辑是一种非常有效的方法,用于在永生细胞系的基因组DNA中产生突变。此过程从一个直接的克隆步骤开始,以生成编码CAS9酶的单个质粒以及合成指导RNA(SGRNA),该质子(SGRNA)被选为靶向基因组中的特定位点。该质粒单独将其转染到细胞中,以通过非同源末端连接途径在所需的基因座上产生随机的插入缺失等位基因(“ indels”),或与同源性的有向修复模板寡核核苷酸一起产生特定点突变。在这里,我们描述了在IMCD3和HEK293细胞中执行基因编辑的程序,并随后分离带有感兴趣的突变的克隆细胞系。
图 3. CRISPR-Cas 应用。 A)基因编辑。利用Cas9可以促进基因组中单个位点或两个位点的切割。在第一种情况(A1)中,切口的修复可以通过 NHEJ 进行,这可以通过随机插入或删除导致基因沉默,或者如果将修复模板引入细胞,则可以通过 HDR 进行修复,这将允许将新序列引入基因组以修改基因、引入点突变等。在第二种情况下(用两个 sgRNA 进行转化),可以发生两次 DNA 切割(A2),因此可以消除 DNA 序列,甚至可以进行易位。 B、C) dCas9 不具有核酸酶活性,也可以与阻遏物或激活物融合使用,以使用 CRISPRi (B) 减少或沉默基因,或使用 CRISPRa (C) 增加基因表达。 (图片由 BioRender.com 生成)
突变是生物体基因组 DNA 序列的变化。这些改变可能是自然发生的,也可能是由于环境因素造成的,它们在进化和遗传多样性过程中起着至关重要的作用。本文探讨了突变的类型、原因和后果,以及它们在医学、农业和进化生物学等各个领域的意义。突变可以根据其性质和涉及的遗传物质的程度进行分类。这些涉及 DNA 序列中单个核苷酸碱基对的变化。点突变可以更进一步。一个碱基被另一个碱基取代。这可能导致沉默突变(蛋白质没有变化)、错义突变(产生不同的氨基酸)或无义突变(产生过早的终止密码子)。增加或丢失一个或多个核苷酸碱基对,如果它们发生在蛋白质编码区,则可能导致移码突变,通常导致无功能蛋白质 [1,2]。
预期用途 SALSA MLPA Probemix P378 MUTYH 是一种体外诊断 (IVD) 1 或仅供研究使用 (RUO) 的半定量检测 2,用于检测 MUTYH 基因中的缺失或重复,以及欧洲血统人群中最常见的两种点突变 c.536A>G (p.Tyr179Cys) 和 c.1187G>A (p.Gly396Asp) 的存在,以确认 MUTYH 相关息肉病 (MAP) 的潜在病因和临床诊断。此外,P378 MUTYH 可用于检测 SCG5/GREM1 区域中的重复,以确认遗传性混合息肉病综合征 1 型 (HMPS1) 的潜在病因和临床诊断。该检测还用于对有风险的家庭成员进行分子遗传学检测。 P378 MUTYH 用于从人类外周全血样本中分离的基因组 DNA。
CRISPR-CAS技术提供了彻底改变研究的可编程基因编辑工具。领先的CRISPR-CAS9和CAS12A酶非常适合编程的基因操作,但是,它们受到基因组规模干预措施的限制。在这里,我们利用了一个基于CAS3的系统,该系统具有用于基因组工程的过程核酸酶。使用单个CRRNA编程的最小Cascade-CAS3系统(I型I-C)进行了优化,以产生效率接近100%的缺失,并用于迅速产生含量为7-424 kb的大删除,铜绿铜。相比之下,CAS9产生了小的缺失和点突变。CAS3生成的缺失边界是高度可变的,但通过同源指导修复(HDR)模板成功指定。HDR效率要高得多。最小I-C系统
虽然直接细胞移植在治疗许多使人衰弱的疾病方面具有巨大的希望,但注射后细胞存活不良和植入的临床翻译有限。尽管可以保护膜破坏膜的扩展流量并提供体内支持性的3D环境,从而改善了细胞保留和治疗成本,但大多数是由合成或自然收获的聚合物产生的,这些环境是免疫原性和/或化学无限的。This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN – a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to “eXTENd” the in vivo half-life of fused protein therapeutics.与源自软骨寡聚基质蛋白衍生的自缔合线圈结构域进行,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。 可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。 最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。 这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。
合成了具有最高预测效力的构建体并在 HEK293T 细胞中进行了测试。第一代的结果表明,大多数增强子+启动子构建体的性能与母体 C6 启动子一样好或更好。特别是,构建体 C120 和 C124 分别表现出约 30% 和约 40% 的提高效力。同样,一些点突变导致性能提高 10% 到 30%。超突变构建体(采用迭代或贪婪方法)破坏了 HEK293T 细胞中的启动子活性。根据第一代的结果,我们合理地设计了一组新的构建体,这些构建体基于体外表达最高的构建体的组合。第二代在 HEK293T 细胞中进行了测试,所有构建体都表现出比亲本 C6 更高的表达。特别是,与原始 C6 构建体相比,构建体 C187 达到了约 2 倍的改善。