摘要:RAS–RAF–MEK–ERK 通路在许多肿瘤的恶性细胞进展中起着关键作用。上游激酶的高度结构复杂性限制了治疗进展。因此,MEK 抑制是一种有前途的策略,因为它易于抑制,并且是其下游效应物许多恶性作用的守门人。尽管 MEK 抑制剂在许多癌症中正在接受研究,但耐药性仍然是实现癌症患者治愈的主要限制因素。因此,我们通过发现癌症治疗中的双靶向疗法完成了高通量虚拟筛选,以克服这一瓶颈。在这里,通过高通量虚拟筛选评估了总共 11,808 个 DrugBank 分子对 MEK 的活性。此外,实施了 Glide 对接、MLSF 和 prime-MM/GBSA 方法,从数据库中提取潜在的先导化合物。两种化合物 DB012661 和 DB07642 在所有筛选分析中均表现出色。此外,研究结果还表明,先导化合物还具有与共同靶标 PIM1 的显著结合能力。最后,基于 SIE 的自由能计算表明,化合物的结合主要受范德华力与 MEK 受体相互作用的影响。总体而言,这些先导化合物对 MEK 和 PIM1 的计算机结合效力可能在不久的将来对克服耐药性具有重要的治疗意义。
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国
摘要。非线视线(NLOS)成像已成为一种突出的技术,用于从经历多种弥漫性反射的图像中重建遮盖的对象。这种成像方法由于其广泛的潜在应用而引起了各种领域的关注,包括遥感,救援操作和智能驾驶。然而,准确地对入射光方向进行建模,该方向携带能量并由检测器捕获,并在随机扩散反射方向中捕获,这构成了巨大的挑战。这一挑战阻碍了NLOS成像的精确前进和逆物理模型的获取,这对于实现高质量重建至关重要。在这项研究中,我们提出了一个使用随机角度跟踪的NLOS成像系统的点扩散函数(PSF)模型。此外,我们引入了一种重构方法,称为物理受限的反向网络(PCIN),该方法通过利用PSF约束和卷积神经网络的优化来建立准确的PSF模型和逆物理模型。PCIN方法在正向PSF模型的约束下随机初始化参数,从而消除了传统深入学习方法需要的广泛训练数据集的需求。通过交替的迭代和梯度下降算法,我们迭代优化了PSF模型和神经网络参数中的分散反射角。结果表明,PCIN不需要大量实际的地面数据组来实现有效的数据利用。此外,实验发现证实了所提出的方法可以高精度有效地恢复隐藏的对象特征。
0490. BEARTRAP 项目(CNO 项目 K-0416)的任务是提供目标声压级 (SPL) 质量记录以及相关新技术、快速原型机制,以应用最先进的收集传感器。该计划将开发并快速部署硬件和软件方面的新技术概念,以有效应对新出现的沿海威胁,并提高目前的海底作战能力,以支持海上盾牌/海上试验计划。BEARTRAP 环境数据收集计划提供被动和主动声学和非声学数据,这些数据对于设计和开发环境模型、传感器、武器、软件算法和战术决策辅助工具至关重要。BEARTRAP 使用安装在独特配置的 ASW 飞机上的开发和原型硬件来收集感兴趣的数据,并使用专门配置的地面支持设施来重建和分析这些数据。BEARTRAP 包括校准的记录系统、先进的检测和跟踪系统、特殊传感器、先进的处理系统和技术以及专门衍生的作战策略。
1。Submission of notification ............................................................................................ 9 2.Approval of Import Inspection of Animals ................................................................... 10 3.Modification of Notification ......................................................................................... 10
主持人:Tim Fout(DOE-FECM)3:15 - 3:35 PM谈话:预测的硝基胺和硝胺浓度的敏感性对模型在ADMS6 Brian Dinkelacker(ExxonMobil)(ExxonMobil)中的输入参数的敏感性3:35 - 4:00 PM谈话:环境和健康风险评估:环境和健康风险评估非COPS/COP)。 Higuchi (EPA/ORD) and Brian Shrager (EPA/OAQPS) 4:00 – 4:25 PM Talk: Evaluation of Atmospheric Chemistry and Dispersion Models Clint Tillerson (EPA/OAQPS) and Rob Pinder (EPA/ORD) 4:25 – 4:50 PM Case-Study: Measurements and Modelling of Non-CO 2 Emissions from Different Amine-based CO 2 Capture Plants in Australia, Norway, Canada and China商品Azzi(气候变化,能源,环境与水,澳大利亚政府)4:50 - 5:00 PM结束言论和休会
ug +诊断使用与第一部分相同的标准确认。从第1 ug +天到观察到CBG +状态,BG测试的频率也增加到每周3-4次。总共证实了37只小鼠糖尿病患者,总体发病率为61.7%(37/60)。第二部分中的糖尿病曲线(图5)与第I部分的结果没有区别,但又大大低于点头/shiltj的原始菌株。有趣的是,当被诊断为UG +和BG +的年龄时,如图2,在图中所示的第二部分中观察到了几乎相同的结果6。与BG +一起鉴定为81.1%(30/37),值在243至475范围内,平均340±63 mg/dl(相反,相比之下(相反,为84.2%,38)(32/38),
由Gibran建立的渔业的出现通过其创新技术驱动的解决方案彻底改变了水产养殖景观。从2012年自动化鱼类喂养装置的开发开始,efishery从创业到独角兽地位的旅程取决于养鱼习惯的变革性进步。此摘要探索了Efishery的轨迹,包括其战略进化,技术创新和重要的里程碑。从2023年获得D系列融资到开创基于非应用程序的技术,该渔业重塑了水产养殖行业,以高效,具有成本效益的解决方案赋予全世界的养鱼者。此外,Efishery扩展到虾养殖技术以及Efermerfresh的推出表明了公司对持续产品创新的承诺。通过反复试验,技术能力和战略远见的融合,渔业巩固了其作为水产养殖技术领域的领导者的地位,推动了该行业的可持续增长和盈利能力。