摘要 识别和量化 1,3-丁二烯中的痕量杂质对于生产高质量的合成橡胶产品至关重要。标准分析方法采用氧化铝 PLOT 柱,该柱对低分子量烃具有良好的分辨率,但对极性烃具有不可重复性和较差的灵敏度。在本研究中,Rt®-氧化铝 BOND/MAPD PLOT 柱用于分离常见的轻极性污染物(包括甲基乙炔和丙二烯)以及 4-乙烯基环己烯(这是一种高分子量杂质,通常需要在另一根色谱柱上进行第二次测试)。通过使用采用色谱柱整个温度范围的扩展温度程序,可以在一次测试中分析 4-乙烯基环己烯以及 1,3-丁二烯中所有典型的低分子量杂质。
对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。
具体而言,已确定烃类树脂的产率与反应温度(0.15 和 0.30)和乳化剂浓度(0.08 和 0.03)无关。已证明,在研究的时间间隔内,低聚物的可变产率取决于反应持续时间(相关性 0.88 和 0.81)。在反相乳液中进行低聚反应时,搅拌强度(0.51)和 С 9:水分数比(0.51)也与产率呈显著相关性。这样便可以推导出产率与最重要工艺参数之间的多元线性回归方程。产率与溴数之间的高相关性(0.94 和 0.93)为讨论低聚反应的进展提供了依据。已证实低聚物特性之间的关系。这表明可以定向调整烃类树脂的某些特性。
222 Jagannath Das 15-03-1990 应用化学 Dr D Guha 和 Dr S Dey 关于无定形二氧化硅 - 铝和结晶铝硅酸盐的合成及其特性和在烃类醇转化和吡啶碱合成中的应用的研究
全世界从事化学物理研究的研究人员都知道 Vladislav Voevodsky 院士的名字。他的努力和才华使得气体链式支链反应、烃类裂解反应以及自由基和原子的非均相反应的研究取得了许多关键进展。Voevodsky 院士是最早认识到磁共振技术在研究自由基和其他顺磁性粒子方面的潜力的人之一。他和他的同事将 EPR 技术发展成为一种研究化学反应的强大实验方法,创立了一个新的科学领域 — — 化学放射光谱学。这项工作反过来又导致了许多基本化学现象研究的突破,包括化学反应的自由基机制、电子离域和转移、固体和液体物质辐解中的基本行为、光化学和光生物过程的机制以及非均相催化。 Voevodsky 院士是化学动力学和燃烧研究所(俄罗斯新西伯利亚)和新西伯利亚国立大学自然科学系的创始人之一。多年来,他一直担任该系主任。他培养并激励了一群世界知名的科学家,他们至今仍在从事化学物理学研究。他的学生对化学动力学和化学物理学的发展产生了重大影响——这是一门描述
Cees Oudijn,Da Vinci 实验室解决方案产品经理 丁二烯作为压缩液化气体储存存在特殊且不寻常的危险。随着时间的推移,聚合反应开始,在气瓶的蒸气空间内形成一层固化材料外壳。如果气瓶受到干扰,外壳会接触液体并引发自催化聚合。释放的热量会加速反应,可能导致气瓶破裂。通常会添加 p-TBC 等抑制剂来降低这种危险。丁二烯的生产商和用户都需要对丁二烯中的抑制剂和萃取剂进行分析。准确报告丁二烯规格对于确定产品价格和确保产品质量非常重要。丁二烯测试通常在生产工厂以及在装船(卸船)前的测试实验室进行。二聚体、苯乙烯和其他碳氢化合物通常作为杂质存在于商用丁二烯中,具体取决于温度条件和储存时间。 ASTM D1157 是目前用于测定轻质烃类总抑制剂含量 (TBC) 的标准测试方法。该方法被认为是劳动密集型的,并且需要蒸发液体样品。Da Vinci Laboratory Solutions 开发了液化气喷射器 (LGI);一种柱上色谱解决方案,可准确测定丁二烯等液化气中的杂质。
汽车修理厂的废物管理不当对环境污染造成了重大影响。这些修理厂附近的区域暴露于大量废机油和其他碳氢化合物废物中。生物修复可能是一种实用的解决方案,因为它具有更好的成本效益和高完全矿化概率,不会造成二次污染。因此,本研究旨在分离、表征和鉴定能够利用和降解碳氢化合物的真菌。这项研究是通过收集马来西亚半岛北部地区受石油污染的场所(包括车间、家庭和污水处理厂)的土壤和水样本进行的。通过在含有废机油(碳氢化合物)作为唯一碳源的选择性琼脂上培养真菌来筛选碳氢化合物降解能力。在选择性琼脂上生长的真菌菌落被划线并传代培养到马铃薯葡萄糖琼脂上,直到获得纯分离物。通过 2,6-二氯苯酚靛酚 (DCPIP) 测定进行进一步筛选,以确认所有真菌分离物利用碳氢化合物的能力。根据形态学特征和显微镜观察对分离的真菌进行了鉴定。从石油污染环境中分离出的四种真菌被鉴定为 Aspergillus sydowii USM-FH1、Aspergillus westerdijkiae USM-FH3、Curvularia lunata USM-FH6 和 Chaetomium globusum USM-FH8。这些真菌分离物在烃类污染场地的生物修复中表现出良好的应用潜力。
摘要:柔性金属有机骨架 (MOF) 在外界刺激下会发生可逆的结构转变。某些 MOF 的一个有趣特性是它们能够响应特定客体而弯曲,从而实现选择性分离。在这里,我们介绍了 MUF-15-OMe ([Co 6 (μ 3 -OH) 2 (ipa-OMe) 5 (H 2 O) 4 ]),它是 MUF-15 的一种变体,由通过 5-甲氧基间苯二甲酸酯 (ipa-OMe) 配体连接的六核钴 (II) 簇组成。MUF-15 本身具有间苯二甲酸酯连接基,在吸收常见气体时不灵活。另一方面,MUF-15-OMe 在压力低于 1 bar 时会弯曲 CO 2 和 C2 烃类等气体,这由其气体吸附等温线中的不同步骤揭示。计算分析表明,潜在机制涉及骨架连接体中羧基之一的部分分离。通过在多元骨架中用间苯二甲酸酯配体替换部分 ipa-OMe,可以调节诱导骨架动力学所需的气压。MUF-15-OMe 的弯曲为吸附特定的额外气体分子打开了空间。这增强了 CO 2 和 N 2 的分离,并使得通过量子筛分能够区分 H 2 和 D 2。通过清楚地说明灵活性如何区分气体混合物,这项研究为使用动态 MOF 进行具有挑战性的分离奠定了基础。
a. 至少需要对以下活动实施正物理隔离 (PPI):i. 涉及进入密闭空间的工作。ii. 在含有或曾含有易燃工艺介质且尚未确认残留物已清除的工艺管道或设备上进行明火热加工。b. 对于涉及打开烃类或化学服务中的工艺、系统和/或设备的所有其他活动,以及无论服务介质如何的长期隔离,PPI 应是首选和首先考虑的隔离方法。i. 如果 PPI 不是一种可行的隔离方法,JO 应评估并确定替代隔离方法,并确定所选隔离方法所需的任何额外和/或替代控制和验证。ii. JO 应确定有权批准替代 JO 隔离方法的组织的职位/级别。指导:记录选择除 PPI 之外的隔离方法的理由有助于证明符合要求 6.b。请参阅附录 E 了解 JO 隔离方法确定流程。参见隔离矩阵 JO 应根据所涉及的危险和所采用的缓解方法,按照控制层次结构确定隔离方法。有三种主要隔离类别可获准实施。隔离的典型方法可在附录 D 中找到。 • 正物理隔离 (PPI) - 通过移除阀芯、插入百叶窗或关闭百叶窗,将要操作的工厂/设备与系统的其他部分完全隔离。 • 已验证的阀门隔离 - 带阀门的隔离,在进入系统之前,可以通过通风/排气点确认隔离的有效性。 • 未验证的阀门隔离 - 未确认隔离有效性的带阀门隔离。 附录 D 中显示的排气阀用于证明阀门中装有危险物品并控制泄漏。用于控制泄漏的各种排气阀配置和操作要求
1.1 适用范围。1.1.1 散装运输液化气体船舶入级与建造规范 1 适用于专门建造或改装的船舶,无论其总吨位和动力装置输出功率如何,用于运输散装液化气体(在 37.8°C 温度下蒸气压超过 280 kPa 绝对值)以及技术要求表(附录 1)中列出的其他物质。散装运输液化气体的船舶 2 完全符合《海船设备规范》、《海船货物装卸设备规范》和《海船载重线规范》的要求。《海船入级与建造规范》 3 在《海船规范》文本规定的范围内适用于液化气体运输船。1.2 定义和解释。1.2.1 液化气体规范中使用以下定义。可燃上限是指空气中烃类气体的浓度,高于该浓度时,空气不足以支持和传播燃烧。二级屏障是货物围护系统的防液体外部元件,旨在暂时围护任何可能通过主屏障泄漏的液体货物,并防止船舶结构温度降低到不安全的水平。 液化石油气运输船是设计用于运输技术要求表(附录 1)所列的液化气体和其他散装产品的船舶 ...或其他散装产品的船舶。货物围护系统和货物管道;使用不需要二次屏障的货物围护系统运载货物的货舱处所;用单一气密钢边界与布置需要二次屏障的货物围护系统的货舱处所隔开的处所;货泵房和货物压缩机房;距离任何货舱出口、气体或蒸汽出口、货管法兰或货物阀门或货泵房和货物压缩机房的入口和通风口 3 米范围内的露天甲板或露天甲板上的半封闭处所;货物区域上方的露天甲板,以及露天甲板上货物区域前后 3 米范围内至露天甲板以上 2.4 米高度的区域;货物围护系统外表面 4m 以内,且该表面暴露在天气中;装有产品管道的封闭或半封闭处所。(装有第 VIII 部分“仪器和自动化系统”6.3 规定的气体探测设备的处所和使用蒸发气体作为燃料并符合第 VI 部分“系统和管道”要求的处所不视为气体危险处所);