非蒸发的液体燃料膜是汽油直接注入发动机烟灰形成的主要原因。在这项研究中,开发了一种UV-VIS吸收技术,以在加热的恒流实验中直接注射后的燃料膜厚度成像。一个六孔GDI喷油器将燃料在100栏上喷涂到距喷嘴30毫米的透明板上。燃料由30%甲苯 / 70%的Iso-octane(分别为383和372 K)组成。气体和壁温度分别为376和352 K,气压1 bar。燃料的蒸发部分被点燃,随后的燃烧膜旁边的燃烧导致了烟灰的形成。在加剧的高速CMOS摄像头上成像了从脉冲LED照明中传输散射的背光。液态甲苯的紫外线吸光度为265 nm的LED。然而,在这种波长下,甲苯蒸气吸收,液体散射,烟灰和烟灰前体的灭绝以及烟灰白幕都干扰了液体燃料的吸光度。为了估计散射和烟灰消光的贡献,将310、365和520 nm处的LED添加到梁路径中,并以32 kHz的帧速率在高速摄像头上与连续的帧相吻合。获得了一个深色框架以说明烟灰阴影,以使所得5图像序列的重复速率为6.4 kHz。通过在先前的工作中开发的形态图像处理估算了甲苯蒸气的吸收,以将弥漫性的,移动的蒸气云与燃料膜的锋利,固定特征分开。允许获得时空分辨的燃油膜厚度测量和有关烟灰的其他信息的多光谱方法。
烟雾趋势已通过各种经验方法(例如烟雾高度和阈值索托指数(TSI))来表征,这些方法可以被视为定性,并且产生了烟灰索引指数(YSI),这是半剂量的,因为它至少依赖于峰值的峰值烟灰体积级别的测量。所有这些技术都具有易于实施和依靠便宜的设备的便利性。在目前的工作中,我们提出了一种相对简单但定量的替代方案,以确定反流量中的烟灰产量。该方法植根于以下方法:a)通过高温测定法,b)烟灰体积分数测量,b)这种平流的良好建立的一维计算建模,用于确定温度和速度pro files and c)使用烟灰处理方程。该技术应用于几种脂肪族,包括甲烷,丙烷,乙烯,丙烯,丙烯和乙炔。烟灰生产速率每单位平流面积,用于10-4和10-7 g/(cm 2 s)之间的测试脂肪植物范围,并且在相对于碳浮引以10-5和10-2之间的归一化。在对数刻度上,它与所有燃料的峰温度相关联。烟灰产生量表为烷烃<烷烃<烷烃,乙炔即使在相对较低的温度下也表现出最高的烟灰趋势。©2023燃烧学院。由Elsevier Inc.发布的所有权利保留。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/