信息科学与工程,Visvesvaraya Technological University摘要:此项目使用计算机视觉和机器学习来创建虚拟试用室和推荐系统,以改善电子商务时尚体验。cnns用于预测身体形式以获得更精确的建议,并且建议引擎使用基于协作和内容的过滤来根据用户偏好,过去的购买和样式提供时尚项目。为了根据每个用户的口味,样式和车身类型提供服装建议,建议引擎将使用协作过滤和基于内容的过滤算法。同时,一个由计算机视觉驱动的虚拟试用室让客户可以通过将合奏叠加在用户提供的图像或头像上并根据车身测量来修改尺寸,以创建逼真的拟合模拟。通过分析用户提供的图片,我们可以增强身体形式检测,提高拟合精度和建议精度。,由于响应迅速的Web界面,用户将能够上传照片,查看建议并几乎可以实时尝试服装。数据处理将由烧瓶或Django-Built Backend处理,该后端还将毫不费力地与PostgreSQL或MySQL数据库进行交互以存储用户和建议数据。该系统是为了高性能和可扩展性而构建的,并托管在云基础架构上。通过提供个性化的建议并以精确的拟合可视化降低回报,该集成系统旨在提高用户幸福感。本网站允许用户以数字方式尝试服装并进行购买,这最终改善了消费者的幸福感并降低回报率。
用途:EpiQuik™ 8-OHdG DNA 损伤定量直接试剂盒(比色法)适用于直接使用从任何物种(例如哺乳动物、植物、真菌、细菌和病毒)中分离的 DNA 检测氧化 DNA 损伤(8-OHdG)状态,这些 DNA 以多种形式存在,包括但不限于培养细胞、新鲜和冷冻组织、石蜡包埋组织和体液样本。输入 DNA:每次检测的 DNA 量可以为 100 ng 至 300 ng。为了获得最佳定量,输入 DNA 量应为 300 ng,因为基础 8-OHdG 通常少于总 DNA 的 0.01%。起始材料:起始材料可以包括各种组织或细胞样本,例如来自烧瓶或微孔板培养细胞的细胞、新鲜和冷冻组织、石蜡包埋组织、血液、体液样本等。内部控制:该试剂盒提供阴性和阳性 DNA 对照。可以绘制标准曲线(范围:5 至 200 pg 的 8-OHdG)或使用单一数量的 8-OHdG 作为阳性对照。因为 8-OHdG 含量在不同组织、正常和患病状态以及治疗和未治疗条件下会有所不同,所以建议运行重复样本以确保产生的信号得到验证。该试剂盒将允许用户量化 8-OHdG 的绝对量并确定两个不同 DNA 样本的相对 8-OHdG 状态。注意事项:为避免交叉污染,请小心地将样品或溶液移液到试纸条孔中。使用防气溶胶移液器吸头,并在每次液体转移之间更换吸头。在整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
为了解决藻类生物质用于生物燃料和副产品的商业化开发方面的主要知识空白和障碍,一个合作联盟——综合筛选、品种优化和验证研究发展 (DISCOVR) 于 2016 年成立。该联盟由美国能源部 (DOE) 生物能源技术办公室 (BETO) 资助,由四个能源部国家实验室——太平洋西北国家实验室 (PNNL)、洛斯阿拉莫斯国家实验室 (LANL)、国家可再生能源实验室 (NREL) 和桑迪亚国家实验室 (SNL)——和亚利桑那州立大学的亚利桑那藻类技术与创新中心 (AzCATI) 组成。为了解决菌株选择障碍,以实现具有适当成分和培养弹性的高季节性生产力,实施了分层的菌株筛选流程。在第一层,在烧瓶培养中确定菌株的温度和盐度耐受性;在 Tier II 中,面积生物量生产力和组成在气候模拟光生物反应器中确定;在 Tier III 中,生产力和培养稳定性在室外水道中确定。表现最佳的菌株将前往 AzCATI 的藻类试验平台进行长期测试,以生成年度生物量生产力数据。在 DISCOVR 管道中进行菌株下调的同时,还会检验有关提高生物量生产力、改变生物量组成以提高内在价值以及提高培养稳定性和抗虫性的假设。进行技术经济分析以确定实验室研究中的有希望的发现或室外池塘养殖条件的拟议修改是否会转化为最低生物质销售价格 (MBSP) 的降低。在 DISCOVR 推出后的三年内,年生物量生产力从 11.7 克 -2 天 -1 增加到 17.6 克 -2 天 -1 ,导致 MBSP 从 824 美元/吨降至 611 美元/吨。
这项研究评估了利用酿酒剂的木质纤维素水解物(BSG)作为氨基酸(AA)生产的木质纤维素水解物的潜力。主要目标是使用选定的微生物探索BSG水解产物的AA产生。最初,筛选了不同的微生物在BSG水解物上的生长,并通过奶昔和生物反应剂中的培养进一步研究了选定的微生物,以进一步研究AA的生产。从这种筛查中,选择了酿酒酵母和谷氨酸杆菌。C.谷氨酰胺在奶昔和生物反应器中产生丙氨酸,脯氨酸,缬氨酸和甘氨酸。在30小时后在奶昔中发现了最高的丙氨酸产生(193.6±0.09 mg/L),而生产脯氨酸(22.5±1.03 mg/l),Valine(34.8±0.11 mg/L)和甘氨酸和甘氨酸(34.8±0.11 mg/L)和甘氨酸(18.7±1.30 mg/l)(18.7±1.30 mg/l)在Bioreactor中和val(gly)和val(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(8小时)。为了增强谷氨酸梭菌的AA产生,进行了饲喂批处理发酵实验。除甘氨酸外,在饲料批次阶段没有产生AA。S。酿酒酵母在奶昔烧瓶中产生丙氨酸,脯氨酸,缬氨酸和谷氨酸,而在生物反应器中则不会产生。在50小时产生50 h,而在60 h 60小时后,获得了50 h,而产生谷氨酸(66.2±0.49 mg/l),而谷氨酸产生(66.2±0.49 mg/l),获得了最高生产(11.8±1.25 mg/l),脯氨酸(11.8±1.06 mg/L)和Valine(4.94±1.01 mg/L)。这项研究的恶魔通过淹没发酵促进了BSG的几个AA的产生。但是,需要进一步优化以提高生产率。
当您浏览时,我们的系统认为您可能是一个机器人,因为某些不寻常的浏览器行为。有几个可能的原因:您是一个以超人类速度在网站上拉开网站的电源用户。您的Web浏览器中已禁用cookie。第三方浏览器插件正在阻止JavaScript运行。要重新获得访问权限,请确保在重新加载页面之前启用Cookie和JavaScript。但是,似乎您实际上正在浏览有关温度和冷的内容。让我们沿着记忆小道旅行!我们探索了一些有趣的事实:绝对零-273度C;南极是地球上最冷的地方;使用露水烧瓶和液体气体以达到较低的温度;以及像法拉第,范德华,迪瓦尔和海克这样的科学家如何为我们的寒冷理解做出了贡献。我们还深入研究了液化世界,科学家争夺征服”山氢” - 涉及使用液体氢和氦实现超冷温度的任务。获胜者就是詹姆斯·迪瓦(James Dewar)!最有趣的是,我们对感冒的掌握如何导致空调,冷冻食品和尖端技术(如液化气体和超导性)的显着技术进步。您想探索更多有关温度和寒冷世界的信息吗?由教育工作者使用各种州标准(包括罗德岛,华盛顿和威斯康星州标准)为高中生而创建的,这些电影工作表链接为追求绝对零的教育资源提供了访问。绝对零的比赛。可下载的工作表伴随着Nova PBS纪录片剧集,探讨了极端寒冷温度背后的科学。绝对零视频问题的竞赛。竞赛绝对零工作表。Nova绝对零工作表的竞赛答案键。绝对零竞赛的绝对零工作表答案。绝对零NOVA工作表答案。绝对零工作表的竞赛答案第2部分。回答键的绝对零工作表的竞赛答案。
机器学习已成为努力通过减少人类偏见和主观性来增强决策过程的现代组织的基石。该项目深入研究了机器学习技术以完善员工促进决策的应用,旨在提高公平,透明度和效率[1]。该研究重点是利用决策树算法和幼稚的贝叶斯分类器,两种强大的机器学习方法,以根据历史数据来预测员工的促进。通过实施这些机器学习模型,该项目试图证明数据驱动的方法如何改变传统的人力资源实践。主要目标是对与员工促进的机器学习相关的方法,收益和潜在挑战进行全面理解。此外,该项目强调在人力资源管理中利用此类技术时所需的道德考虑,以确保数据使用既负责和公平。该项目的范围包括几个关键阶段,从数据收集和预处理开始。这涉及清洁数据,处理缺失值以及编码分类功能以准备模型培训。然后,该项目将评估不同的模型,以确定预测促销的最有效模型。最后,所选模型将集成到用户友好的烧瓶Web应用程序中,使人力资源人员能够输入员工详细信息并接收实时促销预测。此集成旨在简化促销过程,提高组织效率和决策透明度。Cherri Technologies是一家位于印度本迪克里的领先IT公司,在钦奈和法国设有其他办事处。成立于2007年3月,Cherri Technologies在提供顶级IT服务方面享有声誉,包括数字营销,Web和移动应用程序开发,实时流媒体和CRM/ERP解决方案。以客户为中心的方法和由高技能专业人士组成的团队,该公司致力于通过创新的技术解决方案赋予企业能力。该项目与Cherri Technologies的使命相吻合,旨在提供满足各个行业不断发展的需求的高级软件解决方案。通过利用其在软件开发,数据分析和安全解决方案方面的专业知识,Cherri Technologies旨在为员工促销提供强大而有效的机器学习模型。这项倡议不仅展示了公司的技术实力,而且还强调了其致力于促进公平有效的工作场所实践的承诺。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过下一代测序使用 Illumina 平台或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过 Illumina 平台的下一代测序或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
农业是全球维持和经济发展的基石,是无数行业的粮食,就业和原材料的来源。但是,该行业面临着持续的挑战,其中之一就是作物疾病的流行。这些疾病不仅威胁着农作物的产量和质量,而且威胁着农民的生计和整个社区的粮食安全。在受这些问题影响最大的农作物中是木薯,这是热带和亚热带地区数百万的重要主食。木薯对恶劣条件的韧性使其成为关键的食物来源,但它易受木薯细菌疫病(CBB),木薯棕色条纹疾病(CBSD),木薯绿色mottle(CGM)和木薯马赛亚疾病(CASSAVA GREEN MOTTLE(CGM)和CASAVA MOSAIC疾病(CMD)的脆弱性。及时,准确地确定木薯疾病对于有效管理至关重要,因为早期干预可以防止广泛的爆发并减轻经济损失。传统的疾病检测方法通常取决于专家知识和手动检查,这对于小农户来说可能是耗时,昂贵且无法访问的。人工智能(AI)和机器学习(ML)的进步为这一挑战提供了有前途的解决方案,从而使自动化和准确地检测到植物疾病的大规模检测。该项目引入了一个基于深度学习的木薯疾病检测系统,利用强大的Rexnet-150模型进行图像分类。该系统被部署为使用烧瓶构建的用户友好的Web应用程序,即使对于具有最少技术专业知识的个人,也可以确保可访问性。训练有素的模型能够诊断出高精度的木薯叶条件,将其分为五类:木薯细菌疫病(CBB),木薯棕色条纹病(CBSD),木薯绿色mottle(CGM),木薯马赛克疾病(CMD)和健康。用户只需上传木薯叶的图像,该应用程序提供了即时诊断以及可操作的见解。这些见解包括特定疾病的预防措施和管理策略,使农民有能力采取及时的行动来保护其作物。除了其实际实用性之外,该项目与将技术纳入可持续农业的全球努力保持一致。通过利用AI,它可以增强疾病监测和预防,减少对手动检查的依赖,并支持农民采用积极的农业实践。该解决方案的可扩展性意味着它可以适应其他作物和地区,从而进一步扩大了其对全球农业的影响。
摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)