挑战 一家位于印度的领先瓷砖制造商希望提高高铝陶瓷瓷砖的生产率和质量。重点领域是在烧结过程中使用更有效的隔离解决方案。目前,作为生砖之间的隔离材料,气泡氧化铝粉末是手动撒布的,然后将瓷砖堆放、装载并在隧道窑中烧制。然而,由于气泡氧化铝粉末在烧制后的瓷砖上“粘性”,需要物理力量来分离瓷砖,这可能会导致裂缝(图 1)。然后手动抛光瓷砖以去除所有粉末痕迹,这非常耗时(图 2)。与摩根在材料和解决方案方面合作,客户希望实现以下目标: • 减少隔离材料烧制前准备和烧制后去除的工时 • 减少瓷砖破裂和表面污染的缺陷 • 提高生产率和产量
摘要:这项研究的目的是确定工艺壳烧结技术中产生的钾质瓷器制成的牙齿假体的特征。使用2 K进行温度和烧结时间作为控制因素的阶乘计划,考虑了两种为数学建模提供数据的类型的舞会,从而获得了制造参数的主要影响。电阻和CERA摄影测试。该材料具有屈曲阻力,范围为95至126 MPa,回收率为2%至26%。根据最佳数据,在这种玻璃体陶瓷材料中以1.4和2.4%存在一些晶体,在两个烧结系统的理想烧结条件下,平均晶粒尺寸为9和14μm。这些发现指向涉及医疗区域和牙科陶瓷材料中添加剂制造的应用新方向。
由于常规的质量生产方法和固定药物剂量,药物的患者中超过50%的患者仍然无效。三维(3D)打印,特别是选择性激光烧结(SLS),为这一挑战提供了潜在的解决方案,从而允许制造小型的个性化药物。SLS并不是为制药制造而设计的简单性和适合大规模生产的适用性,但不需要耗时,试验和错误的适应过程。为了回应,本研究引入了一个深度学习模型,该模型训练了各种功能,以确定最佳功能集,以代表使用SLS的药物加载配方的可打印性预测药物和聚合物材料。提出的模型通过在预测可打印性方面达到90%的准确性来证明成功。此外,解释性分析推出了促进SLS可打印性的材料,为科学家提供了宝贵的见解,以优化SLS配方,可以将其扩展到其他学科。这代表了该领域的第一个研究,以开发一种可解释的,不确定性优化的深度学习模型,以预测药物加载配方的可打印性。这为加速配方开发铺平了道路,使我们进入了具有前所未有的制造精度的个性化医学的未来。
Hoeganaes 公司新泽西州辛纳明森 08077 摘要 汽车行业的设计师利用双相 (DP) 钢在碰撞过程中吸收大量能量的能力,从而提高驾驶员和乘客的安全性。车辆底盘上可从使用它们中受益的位置通常由撞击期间需要吸收的能量决定。考虑到这些能量吸收性能要求,设计了一种名为自由烧结低合金 (FSLA) 的 DP 钢,用于金属粘合剂喷射打印 (BJT),并应用于 BJT 和激光粉末床熔合 (PBF-LB),以将增材制造 (AM) 的使用扩展到这些应用中。之前的论文 [1-5] 证明了这种 DP 合金的多功能性,其中设计了多种热处理来提供所需的微观结构控制,以满足锻造 DP 低合金钢的广泛机械性能。结果表明,转变产物的比例可以从几乎全是铁素体变为由高百分比的贝氏体和/或马氏体以及少量铁素体组成。本文研究了原始 FSLA 的变体 FSLA 改进型 (FSLA Mod) 的冲击能量与经过几种热处理形成的微观结构的关系。研究重点关注微观结构的变化和由此产生的断裂表面与各自冲击能量的关系。此信息可用于设计适当的热处理,以产生正确的微观结构,满足多种应用对机械性能的需求。简介 DP 钢是一种用途广泛的先进高强度钢 (AHSS),通过热处理定制其微观结构,能够拥有各种机械性能。双相微观结构是通过在相图的两相 + (铁素体 + 奥氏体)区域对这些低碳钢进行临界退火并以预定速率冷却而产生的。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
1。简介选择性激光烧结(SLS)是一种添加剂制造(AM)技术,它通过使用激光在每个计算机辅助设计(CAD)文件的切片中使用激光在粉末状聚合物材料的床上选择性地融化3D模型(图。1a)。SLS的常用聚合物是多酰胺11和12粉,使用温度范围为150-185°C [1-2]。Recently semi-crystalline PEEK of varied LS-grade powders with a melting temperature (T m ) of 343-370°C, were heated up to 380°C to be manufactured into 3D objects by a more elaborate high temperature laser sintering (HT-LS) machine and process, affording PEEK components with a glass transition temperature (T g ) of 150°C [3-4].然而,与传统处理的材料相比,这些热塑性聚合物构建的3D物体的强度通常很弱,这是因为它们由AM加工产生的固有较高的孔隙率以及在Z方向上缺乏聚合物链间连接。因此,对于250-300°C的热固性聚合物开发激光烧结过程至关重要,对航空应用使用能力。最近,将热固性二甲酰亚胺树脂与热导电碳微气泡混合在一起,以提高其激光可吸收性以成功激光烧结[5]。为了克服树脂的低粘度,标准的RTM370树脂在300°C进一步加热2-3小时,以通过促进链扩展,同时仍保持融化融化性处理性,从而提高粘度,从而避免在树脂内部反应性PEPA端盖进行广泛的交联。Initially we have attempted to print a melt-processable RTM370 thermoset polyimide oligomer powder terminated with reactive phenylethynylphthalic (PEPA) endcaps by laser sintering into a 3D objects [6], but soon realized the viscosity of the material originally developed for resin transfer molding (RTM) was too low, and the laser seemed only melted the resin without固化反应性PEPA端盖,从而导致带有空隙的标本。进一步上演的RTM370能够以LS的完整性进行3D打印样品(图1b)。
[1] P. Dreher、R. Schmidt、A. Vetter、J. Hepp、A. Karl 和 CJ Brabec,《银烧结芯片粘接层缺陷无损成像——包括 X 射线、扫描声学显微镜和热成像的比较研究》,《微电子可靠性》,第 88-90 卷,5 月号,第 365-370 页,2018 年,doi:10.1016/j.microrel.2018.07.121。[2] H. Yu,《用于材料评估的扫描声学显微镜》,《Appl Microsc》,第 50 卷,5 月号,第 365-370 页,doi:10.1016/j.microrel.2018.07.121。 1,2020 年,doi:10.1186/s42649- -0 020 0045 4。- [3] YC Jang、HE Kim、A. Schuck 和 YS Kim,“开发功率 MOSFET 加速温度循环的非破坏性验证方法”,微电子可靠性,第 128 卷,2022 年 1 月,doi:10.1016/j.microrel.2021.114442。[4] M. Kobayashi、K. Sakai、K. Sumikawa 和 O. Kikuchi,“信号
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。