芯片:向碳化硅过渡 引线键合:超越铝键合,转向铜键合或无引线键合方法。 基板:更高性能的陶瓷或金属绝缘体基板。 导热油脂:尽可能消除,尤其是直接冷却时 冷却:过渡到双面冷却。 芯片连接:从焊料(例如银烧结材料)过渡。 基板连接:在非常苛刻的条件下可能需要非焊料解决方案。 散热器
摘要 烧结材料由于工艺简单而具有生产率优势,但由于强度不足而不适用于高负荷齿轮。为了提高烧结材料的疲劳强度,作者开发了无需二次加工即可实现高密度的液相烧结技术。在本研究中,评估了硼添加量(0-0.4 mass%)对 Fe-Ni-Mo-BC 烧结渗碳材料滚动接触疲劳强度的影响。此外,为了仅评估硼添加效果而不考虑密度的影响,控制每个试样的烧结密度相同。在本研究的测试范围内,硼添加量为 0.1 mass% 的材料滚动接触疲劳极限(p max )lim 表现出最高值,超过了 1700 MPa。该值不仅明显高于无硼材料的(p max )lim(1100 MPa),而且与锻钢的(p max )lim(1900 MPa)相比也是极高的值。从孔隙结构和材料结构两个角度研究了0.1B辊的(p max )lim明显较高的原因。孔隙结构方面,无硼辊的孔隙形状为不规则形状,而0.1B辊的孔隙形状为球形。通过对滚动接触疲劳试验中辊内部的正交剪切应力进行CAE分析的结果发现,0.1B辊孔隙周围的正交剪切应力的最大值比无硼辊低约35 %。该结果表明,0.1B辊比无硼辊更不容易出现裂纹。即,认为0.1B材料的孔隙形状对滚动接触疲劳强度的提高有影响。
摘要:放电等离子烧结(SPS),也称为脉冲电流烧结(PECS)或场辅助烧结技术(FAST),是一种在中等单轴压力(最大 0.15 GPa)和高温(高达 2500 °C)下烧结粉末的技术。与传统工艺相比,它可以在更低的烧结温度和更短的加工时间内实现陶瓷或金属粉末的完全致密化,为纳米材料致密化开辟了新的可能性,因此在过去几年中得到了广泛的应用。最近,通过将 SPS 与高压(高达 ~10 GPa)结合起来,出现了新的机遇。目前,一个广阔的令人兴奋的学术研究领域正在使用高压 SPS(HP-SPS)来调节烧结的各种参数,如晶粒生长、结构稳定性和化学反应性,从而实现亚稳态或难烧结材料的完全致密化。本综述总结了 HP-SPS 对烧结多种先进功能材料的各种好处。它介绍了各种 HP-SPS 技术的最新研究成果,特别强调了它们的相关计量学及其获得的主要突出成果。最后,在最后一节中,本综述列出了一些关于当前挑战和未来方向的观点,HP-SPS 领域在未来几年可能会取得重大突破。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板
我的研究领域是材料和结构的理论、计算和实验力学。在我的研究活动中,我优先研究具有高度跨学科性的主题,例如先进的功能材料(3D 打印、压电材料、磁性材料)、创新结构(MEMS、超材料)、结构监测和参数识别。因此,我与米兰理工大学的多个研究小组建立了科学关系(机械工程系 Francesco Braghin 和 Nora Lecis 领导的小组、电子系 Giacomo Langfelder 领导的小组)和其他大学(布雷西亚大学 Vittorio Ferrari 领导的小组、麻省理工学院 Luca Daniel 和 Dana Weinstein 领导的小组,以及最近佐治亚理工学院 Alper Erturk 领导的小组)。我与 Lecis 教授一起创建了跨学科实验室 FUNTASMA - 功能烧结材料。最重要的合作与 MetaVEH 项目有关,该项目由欧盟在 Horizon2020 框架下资助,资助协议编号为 952039。这是一个 FET 主动项目,为期 4 年,启动日期为 2021 年 1 月 1 日。该项目涉及以下研究单位:米兰理工大学、帝国理工学院、苏黎世联邦理工大学、意法半导体 SRL、Multiwave Technologies AG、Multiwave Imaging。我是米兰理工大学研究部门的协调员。在 MetaVEH 项目框架内,我与米兰理工大学的微纳米技术中心 PoliFAB 建立了富有成效的合作,以实现创新设备。
对于La 3 Ni 2 O 7的光浮带(OFZ)生长,我们在1100°C的盒子炉中干燥了La 2 O 3粉(99.99%Alfa Aesar)。随后,通过将La 2 O 3和NiO(99.998%Alfa Aesar)混合而成,根据3:2:NI:NI:NI:混合物磨碎20分钟,并在氧化铝坩埚中转移到盒子炉中,然后将其加热至1100℃,持续24小时。圆柱形饲料和种子棒是通过烧结材料的球磨制制备的,这些材料被填充成直径为6 mm的橡胶形式。使用Riken Type S1-120 70 kN按下,将橡胶撤离并以不锈钢形式撤离并压制。所有杆在1150°C中进行热处理。单晶生长是在高压,高温的OFZ炉(HKZ型,Scidre GmbH,德国德累斯顿,德国)中进行的,可以在生长室中的气体压力高达300 bar。生长室(蓝宝石单晶)的长度为72毫米,壁厚为20 mm。在5 kW下运行的XE ARC灯用作HKZ垂直镜对齐中的加热源。然后将14厘米进料和4厘米种子杆在钢架上对齐HKZ,然后安装高压室。随后,腔室用15杆氧气加压,并以0.1 L/min的流速保持。连接熔融区后,通过以2 mm/h的速度移动种子来执行生长。2和3中的第3条]。98(1)Ni 1。 99(1)O 6。 83(7)。 该样本将称为La 3 Ni 2 O 6。98(1)Ni 1。99(1)O 6。83(7)。 该样本将称为La 3 Ni 2 O 6。83(7)。该样本将称为La 3 Ni 2 O 6。我们发现,这种生长在15 bar的氧部分压力下产生单晶体,具有LA 3 Ni 2 O 7 -X的化学计量,并交替单层(ML)Trilayer(TL)堆叠[见图[见图。通过电感耦合等离子体质谱法(ICP-OES)和气体提取对生长晶体进行的化学计量分析表明,LA 2的组成。83在以下。未确定化学计量法的样本将表示为La 3 Ni 2 O 7-x。在600℃下在600 bar o 2大气中退火的单晶将表示为la 3 ni 2 o 7。
可控液体离子氮碳共渗工艺(TENIFER ® 和 ARCOR ® )可替代电镀涂层 Dr. Joachim Boßlet Durferrit GmbH,德国曼海姆 Danilo Assad Ludewigs Durferrit do Brasil,巴西迪亚德马 众所周知,由于其工艺特性,如高质量水平的最佳再现性,离子液体中的氮碳共渗可为处理后的部件提供出色的耐磨性、点蚀、咬合、卡死和表面疲劳抗性。但是,防腐效果仍然中等。可以通过在氧化盐熔体中进行后热处理来解决此问题,在氮化层表面产生非常薄但致密的氧化层。结合抛光和浸渍,氧化部件可以具有光滑、美观的黑色表面,从而显著提高盐雾试验中长达 1000 小时的耐腐蚀性,而不会失去上述优点。本文讨论了应用受控液体离子氮碳共渗 (CLIN) 工艺(如 TENIFER ® 和 ARCOR ®)来取代镀铬、镀镍和镀锌等电镀层,因为它们具有出色的耐腐蚀性和耐磨性,并强调了使用它们的经济和环境优势。由于易于操作,不需要复杂的工厂设备。工艺时间相当短,允许灵活工作,而无需为工作负载建立更大的缓冲容量。1.简介 CLIN 是用于钢和铸铁氮碳共渗和氧化的现代环保工艺的家族名称。氮和碳的扩散会产生所谓的化合物层,该层具有非金属特性。与其他涂层相比,该边缘区域的突出优势在于,牢固的化合物扩散在基材上,而不是涂在表面上。因此,它们表现出非常好的附着力,裂纹敏感性明显降低。根据所用材料,这些层的硬度为 800 至 1500 维氏硬度。化合物层由下面的扩散层支撑。CLIN 处理的部件可提供卓越的防磨损、防卡死、防擦伤、防点蚀和防疲劳保护。2.工艺特点 基本上所有类型的铁材料都可以在盐熔体中进行氮碳共渗,无需任何特殊的初步预处理,例如工具钢、低碳钢、阀门钢、奥氏体钢、铸铁或烧结材料。工艺顺序并不复杂。处理温度通常为 570 - 590 °C。经过短暂的预清洁和在空气中预热至 350 - 400 °C 后,将部件在盐熔体中进行氮碳共渗,通常持续 60 - 120 分钟。在特殊情况下,可以使用较低 (480 °C) 或较高 (630 °C) 的温度。对于淬火,使用水、空气、氮气、真空或氧化冷却浴。随后,用热水级联清洁炉料。对于氮碳共渗熔体,仅需控制以下几个参数: • 熔体的化学成分 • 处理温度 • 处理时间 与其他处理介质相比,盐熔体具有极高的氮含量。浸入液体盐浴后,氮碳共渗过程立即开始。几分钟后,已经形成了一个紧凑的