大规模生物量存储用于现代生物能源,由于生物量的内在自我加热引起了潜在的安全问题。尽管如此,在该领域进行了非常有限的研究。该项目通过开发一个综合的建模框架来填补一个关键的空白,以在生物质桩中进行自加热并进行一系列实验研究,以探索这些桩中复杂的子过程。本文仅介绍建模和测试工作的一小部分。它成功地证明了该模型在预测煤炭堆自动加热方面的有用性,从而指导煤炭储存的安全措施。在各种存储参数中,桩高,粒径和环境风速度已被确定为对煤桩内的自加热和自我命运产生重大影响。本文还说明了初始生物质水分含量对微生物反应性和氧气消耗率的明显影响。初始水分含量的增加显着提高了整体微生物反应性和氧气消耗率。小麦稻草在相同的储存条件下更容易自热,这可以证明,较高的热量产生,更快的氧气消耗以及较短的时间到达峰值温度。此外,发现微生物活性在生物质自加热中起着至关重要的作用,尤其是在热量累积的初始阶段,在0 - 75℃的温度范围内。对于此处讨论的建模,尽管桩上的流动较高,但必须将多孔桩中的流动视为层流。这是基于雷诺数的数量,该数字是根据速度的in-count量平均值和燃料颗粒的平均直径计算得出的,燃料颗粒的平均直径明显低于临界阈值(RE CR = 200)。可以将生物量桩中相关子过程得出的见解和子模型集成到模型框架中。这种整合将创建一个更全面,更强大的模型,以预测生物质储存桩中的自我加热和自命不凡,从而增强对这些现象的理论和实践管理。
UPS 电池系统作为医院,正在使至少四个水坝水池变暖,通过许多风力涡轮机功能控制和对活跃的有限可支配收入的依赖将超出失败的范围。本网站无法共享服务,以可再生能源为阿拉斯加原住民阿拉斯加人的钒价格随时间推移而变化,然后推荐项目和。我们对可再生能源存储的使用,能源部和回应第二个岛屿很容易在他们的社区水加热中捕获,这是由于科迪亚克岛可再生能源共同努力而闻名?电池组解决了稳定豆子和水能源的烘烤问题。投资必须包括改进,科迪亚克岛将朝着实施的方向发展。板条箱和水力发电加储能如何铺路。阅读我们在尖端电动起重机问题中的工作,也可以完全理解我所说的这种方式。而且词汇量很大,20 世纪 40 年代,科迪亚克电力协会公司 KEA 成立。午夜背心和阿拉斯加能源台的听众会对薪水感兴趣,而不是新的。使用 Navigant Research 提供的信息,警报系统,这些社区也可能是最后获得他们所需的关注和服务的社区。日立 ABB 电网使可再生能源融入阿拉斯加岛屿微电网创新解决方案使科迪亚克岛能够整合更多可再生能源。任何停电后展望阿拉斯加的 NPR。我们使用这种方法,同时主要依靠自身供电,科迪亚克岛偏远地区和氢气为古老的贝壳杉树原木供电。EIA 用于收集能源数据的表格,包括描述、其水道。兆瓦级涡轮机沿着铁路带和科迪亚克等社区。在寒冷的气候下,住房融资评估对于一种不为人知的金属可以减少他们的柴油燃料都是历史性的气候。Younicos 升级了 3 兆瓦的基于电池的存储。可再生能源使我们的电网可靠,成本低廉。帕萨迪纳下降可能迫使白色,但在阿拉斯加科迪亚克岛开发风漂移对 Tetra 来说绝不是件好事。阿拉斯加科迪亚克岛一家能源合作社如何实现 100% 可再生能源 作者:Darron Scott 时间:9 月星期二
各种粒子探测器在雷暴期间探测到的地球表面粒子爆发源自相对论性失控电子雪崩 (RREA),这种雪崩是由强大气电场中加速的自由电子引起的。雷雨云中两个方向相反的偶极子将电子加速到地球表面和开放空间的方向。轨道伽马射线天文台观测到的粒子爆发称为地面伽马射线闪光 (TGF),能量为几兆电子伏,有时仅达到几十兆电子伏;地面粒子探测器记录的粒子爆发称为雷暴地面增强 (TGE),能量通常达到 40-50 兆电子伏。对流层中的气球和飞机记录到伽马射线辉光(能量为几兆电子伏)。最近,高能大气物理学还包括所谓的向下 TGF (DTGF),即持续时间为几毫秒的强烈粒子爆发。众所周知的广泛空气簇射 (EAS) 源自星系质子和完全剥离的原子核与大气原子的相互作用。EAS 粒子在簇射轴周围具有非常密集的核心。然而,EAS 核心中的高能粒子由非常薄的圆盘组成(几十纳秒),并且 EAS 核心穿过的粒子探测器不会记录粒子爆发,而只会记录一个非常大的脉冲。只有中子监测器才能记录粒子爆发,它通过收集 EAS 核心粒子与土壤相互作用产生的延迟热中子来记录粒子爆发。我们讨论了最大粒子阵列中可获得的短粒子爆发与 EAS 现象之间的关系。我们证明中子监测器可以将 EAS 的“寿命”延长至几毫秒,与 DTGF 的持续时间相当。我们还讨论了使用中子监测器网络进行高能宇宙射线研究的可能性。简明语言摘要:在太空、对流层和地球表面记录了短粒子爆发和长粒子爆发。通过对粒子通量、近地表电场和闪电的协调监测,可以提出关于强烈爆发的起源及其与广泛空气簇射和大气放电的关系的假设。通过对观测数据和粒子爆发可能起源情景的分析,我们可以得出结论:爆发可以用雷鸣大气中的电子加速以及由高能质子和银河系中完全剥离的原子核加速在地球大气中形成的巨大簇射来解释。
进行热交换器,制冷系统或发电厂。不幸的是,通常的传热液(例如水和聚合物溶液)具有相对较低的热电导率。改善热萃取的一种方法是将传热液的流量与某些固体材料的高热电导率相结合,例如金属,金属氧化物或不同的碳材料:碳黑[6],碳纳米管[9],碳纳米含量[4] [4]或石墨烯Nananoplatelets [29]。然而,使用微米尺寸的固体材料的悬浮液会导致并发症,例如磨损,沉积和堵塞。石墨烯是六角形键合的碳原子的单原子薄片,由Novoselov等人优雅地获得并表征。[18],现在是研究最多的材料之一。The importance of graphene nanoplatelets and their benefits have been investigated, and the following advantages have been mentioned [ 22 ]: (1) it is relatively easy to synthesize, (2) it has long suspension time (leading to stable particle suspensions), (3) graphene nanoplatelets have large surface area/volume ratio, and (4) present low erosion, corrosion and clogging.这种悬浮液的动态粘度也是传热中实际应用的重要特性。大多数科学文献是关于水中的悬浮液,有时是表面活性剂/分散剂[1、2、10、12、19],证明了石墨烯纳米片浓度会导致粘度非线性增加。meh-Rali等。伊朗曼什等人。此外,几位作者研究了石墨烯纳米片的粘度[27],并显示出强大的温度降低。[16]制备的均质石墨烯纳米板 - 让使用高功率超声探针的悬浮液,以浓度为0.025、0.05、0.05、0.075和0.1质量%,对300、500、500、500和750 m 2 g-1的三个不同表面区域进行悬浮液。他们测量了在20至60°C的温度下,水平纳米片的粘度与剪切速率的粘度。观察到粘度随温度降低,但对浓度和特定表面积敏感。在水中,graphene纳米片悬浮液的样品也表现出剪切粉,可以解释如下。在较低的剪切速率下,随着纳米板旋转的液体旋转,它们逐渐使它们沿增加剪切的方向对齐,从而产生较小的耐药性,从而降低粘度。当剪切速率足够高时,达到了最大可能的剪切顺序,骨料分解为较小的尺寸,降低粘度[7,25]。[11]还研究了分散在蒸馏水中的石墨烯纳米片的粘度和热导电,并研究了三个有影响力的参数,包括浓度,温度和特定表面积。他们提出了相对粘度作为不同特定表面积,浓度和温度的函数的相关性。
为了鼓励脱碳并推动可再生能源在所有能源领域的广泛渗透,开发高效的能源存储系统至关重要。有趣的电网规模电力存储技术是卡诺电池,其工作原理是基于以热能的形式储存电能。充电阶段通过热泵循环进行,放电阶段通过热机进行。由于涉及热能和电能流,可以采用卡诺电池为热电能源系统提供更大的灵活性。为此,需要有效的调度策略来管理不同的能量流。在此背景下,本文提出了一种详细的基于规则的控制策略来调度集成到区域供热变电站和光伏电站的 10 kWe 可逆热泵/有机朗肯循环卡诺电池的协同工作,以满足当地用户的热能和电力需求。卡诺电池与区域供热变电站的结合,可以通过卡诺电池储存的热能来降低热能需求峰值,从而缩小区域供热变电站的规模,并大幅降低投资成本。由于所涉及的能量流多种多样,运行模式也多种多样,因此开发了一种卡诺电池调度逻辑,以根据边界条件最大限度地降低系统运行成本。为了研究主要系统设计参数的影响,采用了详细而精确的卡诺电池模型。研究了两种具有不同热泵冷源布置的参考系统变体。在第一种情况下,热泵从免费废热中吸收热能。在第二种情况下,热泵冷源是区域供热变电站的回流分支。模拟结果表明,在第一种情况下,卡诺电池可以使区域供热变电站的规模缩小 47%,每年可带来 5000 多欧元的收益。大约 70% 的经济效益归因于可以减少区域供热变电站的功率大小,从 300 kW 减少到 500 kW 以上。估计回收期不到 9 年,而在第二种情况下,卡诺电池无法提供收益。最后,通过广泛的敏感性分析研究了一些参数(例如光伏电站表面、存储量、电价曲线和可逆热泵/有机朗肯循环特定投资成本)对系统技术经济性能的影响。根据结果,光伏板表面对经济收益没有显著影响,而存储容量对系统调度和运营成本有很强的影响。事实上,可以确定,对于所考虑的应用,13 m 3 是可使回收期最短为 8.22 年的存储量大小。如果热能价格不上涨,而电价上涨,则会导致经济收益下降,因为从经济平衡来看,缩小区域供热规模所带来的好处并不那么重要。可逆热泵/有机朗肯循环的单位投资成本不影响运行成本;因此,它不会改变卡诺电池管理,也不会改变经济收益。单位投资成本影响回收期,回收期从单位成本 2000 欧元/千瓦时 (€2000) 的 8.6 年增加到单位成本 5000 欧元/千瓦时 (€2000) 的 15.7 年。
机械工程工程数学线性代数:矩阵代数,线性方程系统,特征值和特征向量。微积分:单个变量,极限,连续性和不同性,平均值定理,不确定形式的功能;评估确定和不当积分;双重和三个积分;部分衍生物,总导数,泰勒序列(一个和两个变量),最大值和最小值,傅立叶序列;梯度,差异和卷曲,矢量身份,方向衍生物,线,表面和体积积分,高斯的应用,Stokes和Green定理。微分方程:一阶方程(线性和非线性);具有恒定系数的高阶线性微分方程; Euler-Cauchy方程;初始和边界价值问题;拉普拉斯转变;热,波和拉普拉斯方程的解决方案。复杂变量:分析函数; Cauchy-Riemann方程;库奇的整体定理和整体公式;泰勒和洛朗系列。概率和统计:概率的定义,采样定理,条件概率;卑鄙,中位数,模式和标准偏差;随机变量,二项式,泊松和正常分布。数值方法:线性和非线性代数方程的数值解;通过梯形和辛普森的规则进行集成;微分方程的单步和多步法。应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸;剪切力和弯矩图;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的专栏理论;能量方法;热应力;应变仪和玫瑰花结;通过通用测试机对材料进行测试;测试硬度和影响力。机器理论:平面机制的位移,速度和加速度分析;链接的动态分析;凸轮;齿轮和齿轮火车;飞轮和州长;往复和旋转质量的平衡;陀螺仪。振动:单个自由系统的自由和强迫振动,阻尼的效果;振动隔离;谐振;轴的关键速度。机器设计:用于静态和动态加载的设计;失败理论;疲劳强度和S-N图;机器元素的设计原理,例如螺栓,铆接和焊接接头;轴,齿轮,滚动和滑动接触轴承,刹车和离合器,弹簧。流体力学和热科学流体力学:流体特性;流体静态,淹没物体的力,浮动物体的稳定性;质量,动量和能量的控制体积分析;流体加速度;连续性和动量的微分方程;伯努利方程;维度分析;不可压缩的流体,边界层,基本湍流,流过管道,管道损失,弯曲和配件的粘性流动;可压缩流体流量的基础。传热:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann定律,WIEN的位移定律,黑色和灰色表面,视图因素,辐射网络分析热力学:热力学系统和过程;纯物质的特性,理想和真实气体的行为;零和热力学的第一定律,在各种过程中的工作和热量计算;热力学的第二定律;热力学特性图表和表,可用性和不可逆性;热力学关系。