1 eric.tervo@nrel.gov 我们提出了一种太阳能热能转换系统,该系统由太阳能吸收器、热辐射电池或负照明光电二极管和光伏电池组成。由于它是一个热机,因此该系统还可以与热存储配对,以提供可靠的发电。来自太阳能吸收器的热量驱动热辐射电池中的辐射复合电流,其发射光被光伏电池吸收以提供额外的光电流。基于详细平衡原理,我们计算出完全集中的阳光的极限太阳能转换效率为 85%,而一个太阳的极限转换效率为 45%,其中吸收器和单结电池的面积相等。理想和非理想太阳能热辐射光伏系统在低带隙和实际吸收器温度下的表现优于太阳能热光伏转换器。它们的性能增强源于对非辐射生成/复合的高耐受性以及将辐射热损失降至最低的能力。我们表明,与低光密度下的太阳能热光伏设备相比,具有所有主要损耗的实际设备可以实现高达 7.9%(绝对值)的太阳能转换效率提升。我们的结果表明,这些转换器可以作为低成本单轴跟踪系统的高效热机。关键词:太阳能、热存储、热辐射、热光伏
众所周知,瑞典是太阳辐射较低的地区之一,因为它位于北半球,在寒冷季节太阳辐射潜力较低。瑞典政府旨在通过在能源领域实施更多可再生能源计划来促进更可持续的未来。其中一项举措是应用更多可再生能源,光伏板将在我们的社会和能源领域发挥更大作用。然而,由于全天辐射的变化,光伏板产生的能量是不可预测的。解决这个问题的一个好方法是将光伏板与不同的储能系统相结合。本论文评估了瑞典埃斯基尔斯蒂纳的离网联排别墅,其中光伏板与热泵、储热罐(包括电池和氢系统)相结合。在寒冷季节,利用光伏板、电池系统(短期使用)和氢系统(长期使用)来满足年度电力需求。储热罐满足年度热需求。储热罐由氢系统的热损失和热泵的热能充电。
本出版物是ICTAC工作组“热化学” 1期间1997年至1998年期间努力的结果。它涉及用于量热法和差异疗法分析的参考材料(缩写形式:RM)。它代表了IUPAC致命的“物理化学测量和标准”制作的两个先前的文档的更新版本:第一个发表于1974年的Pure and Applied Chemistry [1],第二本书在书籍中,标题为“重新认可的参考材料,用于实现物理学属性的实现” [2]。量热法和差分热分析与涉及物理,化学和生物学过程的广泛科学和技术研究领域相关。量热法通常会产生高度可再现的结果,但是由于测量系统的校准故障,可能是无法降低的。校准是每项热分析研究的基本要求。需要在测量仪器指示的值与正确值之间建立定义定义的关系。通过量化产生的
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。