部长秘书处会计处处长 国防学院总务部管理设施处处长 国防医学院秘书处会计处设施处处长 国家防务研究所规划部总务处处长 联合参谋部总务部总务处处长 国防部地勤参谋部设施处处长 国防部海上参谋部设施处处长 国防部航空参谋部设施处处长 情报总部总务部会计处处长 国防采办技术后勤局局长会计师 防卫地方局采购部处长
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
7. 重要提示 (1) 该人不属于《预算,结算和审计法》(1947 年帝国法令第 165 号)第 70 条的规定。此外,未成年人、受援助者或接受援助者,若已取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算、会计和审计法》(1947 年帝国令第 165 号)第 71 条规定的人。 (3)目前尚未受到防卫省长官房督导局长、防卫政策局局长、采购技术后勤局局长或陆上自卫队参谋长根据“设备等及服务采购暂停提名指南”采取的提名暂停或其他措施。 (4)与根据前款规定暂停指定对象的人有资本或人身关系,且无意与国防部签订与其同类物品买卖、制造或承包服务合同的人。 (5)目前中止招标的企业原则上不允许进行分包。然而,。如果相关部委的暂停提名权认定存在确实不可避免的原因,则不适用此规定。 (6)第四项中的“资本或者人身关系”,是指符合下列条件之一的情形: (a)存在资本关系的情形:当双方属于下述(a)或(b)情形之一时。但是,对于(a),子公司(指《公司法》(2005 年法律第86号)第2条第3款及《公司法施行规则》(2006 年法务部令)第3条所定义的子公司,下同)及对于(b),如果子公司之一为《企业改组法》(1952 年法律第172号)第2条第7款所定义的改组公司(以下简称“改组公司”)或《民事改组法》(1999 年法律第225号)第2条第4款所定义的处于改组程序中的公司(以下简称“改组程序”),则不适用。 (a) 母公司(指公司法第二条第四项及公司法施行细则第三条所定义的母公司,下同)与子公司的情况。 (b) 与母公司相同的子公司的情况。
日本陆上自卫队立川警备队第431会计组办公室及东部军会计组网站(https://www.mod.go.jp/gsdf/eae/kaikei/eafin/index.html)
提出了两个多弹性热激活的延迟荧光(MR-TADF)发射器,并显示了如何进一步的深蓝色MR-TADF Emitter(didobna-n)的blueShifts,blueshifts,并缩小产生新的近乎UV的MR-TADDF EMitter,MESB-DIDOBNA-N,MESB-DIDOBNA,MESB-DIDOBNA-N。didobna-n发出明亮的蓝光(𝚽 pl = 444 nm,fwhm = 64 nm,𝚽 pl = 81%,𝝉 d = 23 ms,tspo1中的1.5 wt%)。基于此扭曲的MR-TADF化合物的深蓝色有机发光二极管(OLED)显示,CIE Y的设备为0.073的设备的最大最大外部量子效率(EQE MAX)为15.3%。融合的平面MR-TADF发射极,MESB-DIDOBNA-N显示出近量的较小和窄带(𝝀 pl = 402 nm,fWHM = 19 nm,𝚽 pl = 74.7%,𝝉 d = 133 ms,TSPO1中的1.5 wt%)。掺有共同主持人的MESB-DIDOBNA-N最好的OLED显示出近紫外OLED的最高效率为16.2%。以0.049的CIE坐标为0.049,该设备还显示了迄今为止MR-TADF OLED的最蓝EL。
$__________________________ ______ ______ ______________________ 学生每学期费用 (√)秋季 (√)春季 每周用餐次数 ______________________________ _______________________ ____________________ 学生签名 学生证号 日期 ______________________________ ________________________ ____________________ 房屋公司董事会代表 姐妹会/兄弟会名称 日期
4 PRIMES 是一个局部平衡模型,可预测详细的能源平衡,包括需求和供应、二氧化碳排放、需求和供应投资、能源技术渗透、价格和成本”。这些预测是为了满足欧盟 2016 年制定的 2030 年排放目标而制定的(请参阅 http://ec.europa.eu/environment/archives/air/models/primes.htm)。 5 PRIMES 情景中未包括瑞士和挪威的发电结构。瑞士数据是根据联邦环境、交通、能源和通信部 (DETEC) 提供的数据制定的。挪威数据是根据挪威政府(请参阅:https://www.regjeringen.no)提供的火力发电厂数据和挪威水资源与能源局(NVE,请参阅:https://www.nve.no)提供的包括水电在内的可再生能源数据制定的。
结果和讨论微生物测试的完整和截短的140°C灭菌周期的微生物测试结果如表1所示。在每种情况下,在140°C的干热周期中的任何一个中,来自不锈钢载体的任何样品中均未发现生长,证明了全部消除。在不同日期,所有截短的运行均显示结果的一致性,增长为零。阴性对照没有显示生长(未显示结果),表明技术人员没有样品污染。阳性对照与测试样品相同,除了未放入孵化器中。由于所有灭菌周期都能够消除所有微生物,包括用于干热量灭菌的规定生物学指标孢子,因此恢复程序仅用于阳性对照。表2中为323 L模型提供的结果清楚地表明,恢复的所有正面对照至少为10 6 CFU/载体,因此成功满足了所有接受标准。表3中给出的232升模型中所示的结果表明,最重要的生物学指标(抗抗热孢子孢子芽孢杆菌)最少回收了10 6 CFU/载体。这些结果证明,140°C的灭菌程序至少达到6-7 log 10减少抗脂肪芽孢杆菌的抗热孢子,符合EUP和USP的干热量灭菌所需的灭菌标准。
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。
