热能存储引起了广泛关注,相变材料 (PCM) 因其有益的物理和化学特性而被广泛使用。虽然氮化物基盐 PCM 通常用于热能存储,但其潜热存储能力仍然有限。这项研究通过加入单层氮化硼来增强氮化物基盐用于热能存储的性能,从而提高热导率和潜热存储能力。Sn₃N₂-LiNO₃-NaCl/单层氮化硼的新型混合物具有高比热容、高潜热值和低相变温度的特点,使其成为热能存储的绝佳候选材料。在 PCM 中添加单层氮化硼可显著提高热导率,将其从 1.468 W/m·K 提高到 5.543 W/m·K。值得注意的是,这些氮化物基三元盐不会相互发生化学反应;它们的相互作用纯粹通过混合来改善热性能。该新型共混物还表现出了良好的热稳定性,在600℃时分解率仅为0.5%,熔化温度为150℃,凝固温度为130℃。三元盐的比热容达到最大值3.5 J/g·℃,表明热流速率更高,充电和放电速率也更高。复合PCM(CPCM)的储热能力在600℃时为600 kJ/kg,这些PCM的组合延长了储热时间。三元盐表现出优异的热稳定性,在100次循环中保持性能而质量没有显著减少。此外,三元盐向单层孔隙中的扩散进一步增强了其有效性。使用基于Anaconda的Jupyter Notebook和Python进行模拟分析。
聚乳酸 (PLA) 是 3D 打印工艺中常用的材料。在材料挤出 (MEX) 技术中,最终的 3D 打印部件具有较低的机械性能。本研究的目的是研究经过退火的 3D 打印 PLA 样品的拉伸强度。考虑的变量是退火温度和退火时间,有三个温度水平:70 ℃ 、90 ℃ 和 110 ℃ ,以及两个退火时间:60 和 90 分钟。冷却速度设定为每小时 10 C,并在炉中冷却 24 小时。结果表明,退火显著影响拉伸强度,与未退火部件相比,退火部件的拉伸强度显著提高。与未经过退火的部件的拉伸强度值相比,退火部件表现出更高的拉伸强度。弹性模量趋于下降,工件尺寸在各个方向上略有收缩。在对患有足下垂的儿童踝足矫形器(AFO)进行退火实验的结果中发现,经过退火处理的踝足矫形器样品在各个方向上均有收缩,变化相对较小。当使用退火工件时,无需补偿工件尺寸。在 110 C 温度下进行 90 分钟的退火时,可获得最高的拉伸强度。与打印样品相比,退火样品的拉伸强度平均提高了 42%。该玻璃化转变温度越高,热值越高,这将影响塑料链的排列和结晶度,并导致其物理性质发生变化。此外,研究结果表明,通过选择理想的工艺参数和后处理条件,可以大大提高热塑性材料的优化拉伸强度。
注释:对于生物燃料途径,上游排放量是指在培养中使用化石燃料和化肥,而低上游排放量是指在培养中使用低排放燃料和肥料。GHG最少的技术涉及可行的处理,较高的电解器效率和CC中的低发射能量输入,但不包括通过土壤碳积累的去除。该图中假定的原料运输排放没有变化,尽管可以通过切换到低排放能源来影响。re =用于电解供电的可圈性可再生电力; RD/SAF(RE + ProcessCo₂)=该途径的上游排放中间排放量是指行业之间的30/70分配CO₂排放益处(CO₂来源)和产生的燃料,而低的上游排放量是指100%分配福利对燃料的分配。包括可再生能力的体现排放(假设上游上游排放的中位排放的50/50混合PV/风力发电厂,以及用于低上游排放的水力发电),这与当前的ISO方法有所不同,这些方法不包括在GHG强度中,但分别报道了这些排放。假设:所有效率均给予较低的加热值。电解器效率为66%(典型),69%90%(温室气最少); h₂-to-to-yncrude 57%,从英尺喷气燃料炼油厂的运输燃料质量产量为85%。从最终燃料到最终用户的运输和分布的排放量为2 GCO2-EQ/MJ,用于液体燃料和甲烷的管道运输,以及4 GCO2-EQ/MJ用于氢的管道运输。基于欧盟红色II附件V(2018)的Biofuel GHG排放。
AD 厌氧消化 AGF 美国天然气基金会 ATB 先进技术基线 CAFO 集中式动物饲养作业 CCST 加州科学技术委员会 CH4 甲烷 CI 碳强度 CNG 压缩天然气 CO 一氧化碳 CO 2 二氧化碳 CO 2e 二氧化碳当量 CWC 纤维素减免信用 CWNS 清洁流域需求调查 DGE 柴油加仑当量 DOE 美国能源部 EFI 能源未来倡议 EIA 能源信息署 EPA 美国环境保护署 EREF 环境研究与教育基金会 gCO 2e/MJ 每兆焦耳的 CO 2e 克数 GHG 温室气体 H2S 硫化氢 HHV 高热值 IOU 投资者所有的公用事业 KDF 生物能源知识发现框架 LCFS 低碳燃料标准 LCOE 平准化能源成本 LFG 垃圾填埋气 LFGE 垃圾填埋气发电 LMOP 垃圾填埋甲烷推广计划 M&HDV 中型和重型车辆 MGD 百万加仑/天 MMBtu百万英热单位 MMtCO 2 e 百万公吨 CO 2 e MOU 市政公用事业 MSW 城市固体废物 N 2 氮气 NGV 天然气汽车 O 2 氧气 P2G 电转气 PA-CAP 宾夕法尼亚气候行动计划 PEM 质子交换膜 POLYSYS 政策分析系统 REC 可再生能源证书
摘要将纳米颗粒作为腐蚀抑制剂的使用变得越来越受欢迎,因为由于表面与体积比的增加,其腐蚀效率提高。纳米颗粒,可有效地对腐蚀金属表面进行物理/化学吸附并有效抑制腐蚀,也具有低毒性,低成本和易于产生的腐蚀性。在这项研究工作中,使用减肥方法来研究使用Senna Occidentalis根提取物合成的银纳米颗粒(AGNP)的抑制性能,作为在298 K和308 K处的0.5 m H 2 SO 4培养基中降低的降低碳钢抑制剂的环境良性腐蚀抑制剂。观察到,与钢的腐蚀速度增加了钢的腐蚀速度,并增加了与钢的腐蚀速度相比的腐蚀量增加了钢的腐蚀量,并在钢铁中的腐蚀速度增加了钢的腐蚀。在308 K时,在308 K -3的浓度下,在308 K的浓度下获得了65.59%的最高抑制效率,在308 K时浓度为1 GDM -3时,最低抑制效率。观察到表面覆盖率随纳米颗粒浓度的增加而增加,并且随温度的升高而下降。这可能是由于物理吸附机制的结果。发现,在抑制过程中,评估的活化能比未抑制过程高。在存在纳米颗粒的情况下,明显活化能的增加表示物理吸附机制,而相反的情况通常归因于化学吸附。吸附Q AD的热值表明吸附现象是放热的。简介关键字:纳米颗粒,银,纳米颗粒,塞纳西南利斯,腐蚀。
AD 厌氧消化 AGF 美国天然气基金会 ATB 先进技术基线 CAFO 集中式动物饲养作业 CCST 加州科学技术委员会 CH4 甲烷 CI 碳强度 CNG 压缩天然气 CO 一氧化碳 CO 2 二氧化碳 CO 2e 二氧化碳当量 CWC 纤维素减免信用 CWNS 清洁流域需求调查 DGE 柴油加仑当量 DOE 美国能源部 EFI 能源未来倡议 EIA 能源信息署 EPA 美国环境保护署 EREF 环境研究与教育基金会 gCO 2e/MJ 每兆焦耳的 CO 2e 克数 GHG 温室气体 H2S 硫化氢 HHV 高热值 IOU 投资者所有的公用事业 KDF 生物能源知识发现框架 LCFS 低碳燃料标准 LCOE 平准化能源成本 LFG 垃圾填埋气 LFGE 垃圾填埋气发电 LMOP 垃圾填埋甲烷推广计划 M&HDV 中型和重型车辆 MGD 百万加仑/天 MMBtu百万英热单位 MMtCO 2 e 百万公吨 CO 2 e MOU 市政公用事业 MSW 城市固体废物 N 2 氮气 NGV 天然气汽车 O 2 氧气 P2G 电转气 PA-CAP 宾夕法尼亚气候行动计划 PEM 质子交换膜 POLYSYS 政策分析系统 REC 可再生能源证书
拟议的研究涉及“主题领域 1:将海藻转化为低碳燃料和生物产品”,并计划开发一种低成本连续催化热液液化 (CHTL) 工艺 (TRL2→4),该工艺能够处理腐蚀性原料,以展示将褐藻 Saccharina latissima (糖海带) 中的多糖最佳转化为低碳、稳定且高能量密度 (>35 MJ/kg) 的生物油/生物原油前体 (产量 >45 wt.%),用于可持续航空燃料 (SAF)。为了进一步提高可行性和可持续性,我们建议探索 i) 储存和预处理方法,以保存多糖,同时降低灰分/盐含量;ii) CHTL 反应器系统的低成本涂层,以承受与连续、热效率高、高通量反应器运行相关的腐蚀性反应条件。我们工艺开发工作的总体目标是制定适用于农场藻类生物精炼模式的糖海带连续 CHTL 加工蓝图,使温室气体排放减少 60% 以上(石油原油基线)。所提出的方法解决了目前在以下方面的知识空白:1)节能高效的海带储存,保存多糖;2)HTL 原料的高盐/灰分管理;3)生物原油的稳定性和热值;4)连续水热加工以获得高能生物原油;5)反应器腐蚀问题,以解决在更高 TRL 下生产生物原油的可行性。该项目将使用由低成本 304H 钢制成的具有耐腐蚀涂层的 CHTL 反应器系统,展示从糖海带中连续生产 500 小时或 3 周的油,并在考虑 SAF 途径的同时,通过 TEA 和 LCA 展示经济和环境影响。
能量的单向流动和物质的循环是一般生态学的两大原则(Odum,1963),不仅适用于生物圈及其组成生态系统,也适用于生态系统内的子系统。事实上,生态系统及其子系统只是自然现实的方便抽象。每个子系统的界限无法准确定义,因为许多生物都属于多个子系统。此外,每个子系统都不是孤立存在的,而是与其他子系统相互作用。因此,根微生物系统只是一个概念,它认识到陆地生态系统中能量流动的最重要途径之一是从植物根部直接流向微生物。根微生物系统几乎完全由异养生物组成,因此依赖于外部能量来源,即植物叶子。因此,考虑整个植物的能量流动是适当的。然而,这里不会讨论叶圈的微生物群落。叶子中的自养细胞(在某种程度上,枝条系统的其他部分)将阳光的能量转化为“还原碳单位”的化学能。碳是生物体通过化学键储存和转移能量的载体(Mooney,1972 年)。叶子中合成的大部分富含能量的物质被运输到植物根部,然后运输到微生物。在整个系统中,能量用于生长、繁殖、维持等过程,但根据热力学的经典定律,能量最终会全部消散并从系统中流失。在植物-微生物系统中,会合成许多碳化合物。并非所有这些化合物都会分解为 CO 2 ,甚至不会部分代谢。在某些情况下,热值未知或难以确定。因此,在目前的讨论中,方法将是绘制碳从固定到储存并在系统的不同组成部分中利用的移动。这将间接表明能量通过系统的转移。农学、生态生理学和土壤微生物学的最新进展提供了新的见解
缩写 缩写全称 AFC 年度固定成本 ARR 总收益要求 ATE/APTEL 电力上诉法庭 BTPS 巴德拉德里火力发电站 CAG 印度审计长 CAGR 复合年增长率 CEA 中央电力局 CERC 中央电力监管委员会 CESS 电力合作社 CGRF 消费者申诉救济论坛 CGS 中央发电站 CSERC 恰蒂斯加尔邦电力监管委员会 CL 连接负荷/合同负荷 CMD 合同最大需求 CoD 商业运营日期 CoS 服务成本 CPWS 综合保护水供应 CSPDCL 恰蒂斯加尔邦配电有限公司 CSPTCL 恰蒂斯加尔邦输电有限公司 CUF 容量利用率 D-to-D 配电公司对配电公司 DPS 延期付款附加费 DSM 需求侧管理 DTR 配电变压器 EHT 超高压 EPS 电力调查 ERC电力监管委员会 FCRTS 全部成本回收电价表 FPT 拟议电价备案 FSA 燃料附加费调整 FY 财政年度 GCV 总热值 GoTS 特伦甘纳邦政府 GoI 印度政府 HMWSSB 海得拉巴都会供水和污水处理委员会 HT 高压 I&CAD 灌溉和指挥区开发 JNNSM 尼赫鲁国家太阳能计划 KTPP 卡卡蒂亚火力发电厂 KTPS 科塔古德姆火力发电站 kVA 千伏安 kW 千瓦 kWh 千瓦时 LJHES 下朱拉拉水力发电项目 LT 低压
AERC 阿萨姆邦电力监管委员会 BERC 比哈尔邦电力监管委员会 BSE 孟买证券交易所 CAPM 资本资产定价模型 CEA 中央电力局 CERC 中央电力监管委员会 COD 商业运营日期 CPI 消费者价格指数 CSERC 恰蒂斯加尔邦电力监管委员会 CSP 聚光太阳能发电 CUF 容量利用率 DSCR 债务偿还率 EOI 意向书 ESS 储能系统 ERC 电力监管委员会 GBI 发电激励措施 GCV 总热值 GERC 古吉拉特邦电力监管委员会 GOI 印度政府 GST 商品及服务税 HERC 哈里亚纳邦电力监管委员会 HPERC 喜马偕尔邦电力监管委员会 H&M Hydro Mechanical IDC 建设期间利息 IEGC 印度电网规范 IoWC 营运资本利息 IREDA 印度可再生能源发展机构 JERC 联合电力监管委员会 KERC 卡纳塔克邦电力监管委员会 Kg 千克 kWh 千瓦时 LC 信用证 MAT 最低替代税 MCLR 基金边际成本贷款利率 MERC 马哈拉施特拉邦电力监管委员会 MNRE 新再生能源部 MPERC 中央邦电力监管委员会 MSW 城市固体废物 NIWE 国家风能研究所 NLDC 国家负荷调度中心 O&M 运营和维护 PFC 电力金融有限公司 PLF 电厂负荷率