. 吸湿性:在 30°C/85%RH 下通过 >1 年,适用于 MSL1 封装 环氧环:未固化 2 小时扩散 <50um,在 150°C 下固化 1 小时扩散 <75um 应用范围:军事、医疗、光电子、汽车传感器等的理想选择 多功能兼容性:将 IC 和组件粘合到陶瓷、PBGA、CSP、LCP 和阵列封装上 稳定性:疏水性且在高温下稳定 卓越的粘合强度:与各种有机和金属表面的界面粘合 可靠性:可承受高温测试、老化和热冲击(-75°C 至 +175°C) 电气性能:低电阻率、TC >8W/mK 和最小的排气
• 湿热(+40°C 和 93% 湿度)16 小时(NF EN 60068-2-78) • 干热(+50°C)16 小时(NF EN 60068-2-2) • 热冲击:-36°C 和 +49°C 下 20 个一小时循环(NF EN 60068-2-14) • 极端温度:-20°C 和 +70°C 下 4 小时(NF EN 60068-2-1 和 NF EN 60068-2-2) • 低温:-36°C 下 16 小时(NF EN 60068-2-1) • 室温下连续飞行 92 小时,无机械磨损 • ANAFI USA 从一米高度跌落到混凝土上 18 次(每侧 3 次)后仍可正常运行图。 8:跌倒测试
窑温 每个回转窑都应配备热扫描仪。它能全面反映窑壳的温度,使操作人员能够在温度过高时停窑,从而避免窑壳开裂和变形。大多数窑炉已配备窑壳扫描仪,但有时停窑的决定为时已晚。当窑壳温度尽管用风扇降温但仍升至 450˚C 以上时,就需要停窑。向窑壳上喷洒大量水也不是一个好的解决方案,因为热冲击会导致窑壳开裂。新型扫描仪应能够连接到控制系统,其中 AI 可以帮助识别“应该做和不应该做的事情”,以防止出现不良的温度模式。
•用于液体盆栽热凝胶形成(防止干燥或抽水)的分配和长时间的工作寿命,可用于可靠的模块热包装•易于放置和在模块之间的热接口垫的放置和可压缩性,用于冷却和结构支撑系统之间的热量和结构支持•在Halogen-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-94V-0可行性,AIT电池包装和冷却界面解决方案的设计旨在易于通过无压力机械接口进行回收。除了无与伦比且经过证实的低热阻力外,AIT的盆栽热凝胶和模块安装以及热水螺旋热接口还提供了多年的热冲击和循环的长期可靠性和一致性。AIT产品具有内置的应力缓解和分子结构,这些结构旨在防止材料内部和界面表面内部“干燥”或开裂。其他功能包括:
•IP5X:至少32分钟耐尘(CEI 60529)。•潮湿的热量(+40°C和93%的水学)16小时(NF EN 60068-2-78)•干热(+50°C)为16H(NF EN 60068-2-2)•热冲击:热休克:20 1小时的周期为-36°C和+49°C(NF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENF ENFERTISE:60068-2-14)• °C持续4 h(NF EN 60068-2-1和NF EN 60068-2-2)•低温:-36°C持续16 h(NF EN 60068-2-1)•92在环境温度下在环境温度下进行92次飞行小时,无机械磨损•ANAFI USA•ANAFI USA在每次18次(3落在Concrete face concrete)上(3落在Concrete)上,1米
1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.8 稳态寿命 1006 间歇性寿命 1007 一致寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.7 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.10 密封 1015.9 老化测试 1016 寿命/可靠性特性测试 1017.2 中子辐照 1018.2 内部水蒸气含量 1019.4 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.2数字微电路的剂量率翻转测试 1022 Mosfet 阈值电压 1023.2线性微电路的剂量率响应 1030.1预封装老化 1031 薄膜腐蚀测试 1032.1封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性寿命测试 1034 芯片渗透测试(针对塑料设备)
最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。
化学蒸气沉积的CVD锌硒尼德®是首选的材料,作为在高功率CO 2激光器中用作光学成分的材料,这是由于其低散装吸收在10.6微米时。其折射均匀性和均匀性的索引提供了出色的选择性性能,可作为保护窗口或高分辨率向前外观(FLIR)热成像设备的光学元素。该材料也已用作医疗和工业应用中的小窗户和镜头,例如热元和光谱法。cvd锌硒化®是化学惰性的,非Hygromocopic,高度纯净的,理论的,易于加工。由于吸收和散射,它具有极低的体积损失,对热冲击具有很高的抵抗力,并且在几乎所有环境中都是稳定的。可以根据您的规格制作自定义直径,矩形,CNC式空白,生成的镜头空白,棱镜和近网状形状圆顶。
外泌体是一种直径为40~100nm、具有双层膜包裹的细胞外囊泡,作为天然载体具有免疫原性低、在血液中稳定性高、可将药物直达细胞等优点,能够在细胞间进行运输,有利于细胞间物质和信息的交换,通过装载外源性药物(如小分子药物、跨膜蛋白、核酸药物等)来改变受体细胞的功能状态。外泌体作为药物载体的关键是将外源性药物有效地装载到外泌体中,而这一任务对外泌体作为药物载体的功能化研究是一个挑战。目前,超声处理、电穿孔、转染、孵育、挤压、皂苷辅助装载、转基因、冻融循环、热冲击、pH梯度法、低渗透析等方法已被用于将这些药物装载到外泌体中。本综述旨在概述外泌体各种药物装载技术的优缺点。
第二版于 2016 年出版,共计印刷了 450 份数字版,并从 NIST 网站下载了数千份。第二版比第一版大 15%,包含 300 幅新插图,总共近 1000 个图表。第二版更正了许多小错误和一些大错误,例如对邻近照明的描述。第二版增加了有关断口分析历史的信息,并包含许多更新和新显微镜技术的示例。第二版增加了有关边缘碎裂、热应力和热冲击、压缩断裂、机械疲劳、慢裂纹扩展机制和陡坎的新信息。第二版引入了新术语,包括“阶梯状裂纹”、“远场应力”、“微观结构裂纹”和“格里菲斯缺陷”。第六章“起源”的内容显著扩展,增加了有关气泡、烧成裂纹、尖点和几何尖点的新图表。第二版还添加了许多新的牙科陶瓷和牙科复合材料示例。