该项目的开发是在作者担任美国国立卫生研究院国家糖尿病、消化和肾脏疾病研究所 (NIDDK) Ira Levin 博士实验室客座研究员期间进行的,他的热情好客和热情将永远被人们铭记和赞赏。最后,
按照 FQMT 会议的传统,FQMT'24 将再次汇聚各学科领域的年轻和经验丰富的科学家,共同探讨上述主题。会议的跨学科性质将通过主讲人的选择来体现,他们除了专业之外,还能够报告各自领域的具体成果,还能从与其他领域重叠的更广阔视角来讨论各自领域的最新进展。会议的目标是聚集来自不同物理学分支的重要科学家,他们可以通过交流不同的观点和想法、研究许多不同系统的经验以及研究当前物理学问题的各种理论和实验方法而相互受益。希望此次会议的科学议程安排能再次为提出具有挑战性的问题和难题及其答案做出重大贡献,这些问题和答案对于提高对量子物理学基础、多体物理学、远离平衡系统的量子统计物理学、纳米级和生物系统物理学的理解至关重要,并将进一步激发物理学、化学和生物学不同领域的专家之间的新合作和深入讨论。
我们通过从具有稳定器表示的AME状态构建整个QMDS代码的全部QMDS代码来解决绝对最大纠缠(AME)状态和最大距离可分离(QMD)代码之间的关系。我们为AME状态的稳定器表示的发电机集引入了通用还原友好的形式,可以从中获得所有QMD的稳定器形式。我们的方法将用于相关的高维代码以及基于量子的代码。然后,我们将其与单向量子中继器的最佳代码联系起来,通过最大程度地降低短期基础设施成本以及此类量子中继器的长期运行成本。这将允许我们获得从AME父状态得出的最佳QMDS代码,该代码可用于此类量子中继器。
[1] A.White,G。Parks和C. N. Markides,“泵送热电储存的热力学分析”,《应用热工程》,第1卷。53,pp。291–298,2013年5月。[2] J. D. McTigue,A。J.White和C. N. Markides,“泵送热电储存的参数研究和优化”,Applied Energy,第1卷。137,pp。800–811,2015年9月。
在本文中,我们基于图结构的热力学表示,提出了一种新颖的时间演化网络分析方法。我们展示了如何通过将主要结构变化与热力学相变联系起来来表征随时间变化的复杂网络的演化。具体来说,我们推导出许多不同热力学量(特别是能量、熵和温度)的表达式,并用它们来描述网络系统随时间的演化行为。由于现实世界中没有一个系统是真正封闭的,并且与环境的相互作用通常很强,因此我们假设系统具有开放性。我们采用薛定谔图作为量子系统随时间的动态表示。首先,我们使用图结构的最新量子力学表示来计算网络熵,将图拉普拉斯算子连接到密度算子。然后,我们假设系统根据薛定谔表示演化,但我们允许由于与环境相互作用而导致的退相干,模型类似于环境诱导退相干。我们将模型的动态过程分解为(a)未知的时间相关幺正演化加上(b)观察/相互作用过程,从而简化模型,这是系统密度矩阵特征值变化的唯一原因。这使我们能够通过估计负责演化的幺正部分的隐藏时变汉密尔顿量来获得与环境的能量交换度量。利用能量、熵、压力和体积变化之间的热力学关系,我们恢复了热力学温度。我们评估了该方法在代表金融和生物领域复杂系统的真实世界时变网络上的效用。我们还比较和对比了热力学变量(能量、熵、温度和压力)提供的不同特征。研究表明,时变能量算子的估计可以强烈地表征时间演化系统的不同状态,并成功检测到网络演化过程中发生的关键事件。
本评论文章的主要重点是检查用于从蒸汽主导的资源中发电的电源周期。它讨论了跨批判性CO 2(T-CO 2)功率周期和兰金周期的现象,这些循环已由许多学者进行了广泛的研究。该文章还使用双元周期,地热发电厂和太阳能辅助发电厂简要探索了基于燃料电池的发电厂。本文介绍了这些植物的发电,热效率,能效和发电效率的信息。调查表明,地热发电厂的热效率从6.5%到16.63%,并且驱动效率从7.95%到82%不等,在199.1 kW到19,448 kW的范围内产生功率。太阳能发电厂生产的电源在550.9 kW至4500 kW之间,能源效率在21.93%至57%之间,并且发电效率在50.5%至64.92%之间。使用NH 3 +H 2 O作为工作流体的燃料电池发电厂从1015 kW到20125 kW,热效率在25.4%至70.3%,并且热效率在12.1%和36%之间。本文在这些情况下强调了卡利纳周期的使用。
在过去的十年中,实验者已经证明了他们在量子镜中控制机械模式的令人印象深刻的能力,直到量子水平:现在有可能创建机械的fock状态,从不同的物体中纠缠机械模式,存储量子信息或将其从一个量子位转移到另一个量子位,并在当今的文献中发现的许多可能性。的确是量子,就像旋转或电磁自由度一样。,所有这些尤其被称为量子技术的新工程资源。,但除了这一功利主义方面,还有更多的东西:援引布拉金斯基和洞穴的原始讨论,其中量子振荡器被认为是经典场的量子检测器,即引力波,也是量子量的独特感应能力。研究主题是机械模式与之耦合的浴室,让它们在自然界中是已知或未知的。这封信是关于这种新的潜力的,它解决了随机热力学的问题,可能是量子版本,搜索最近在最近的理论中假定的基本基础(随机)领域,这些字体可以与波浪功能崩溃模型的类别相吻合,以及呈现出浓缩模型的更为开放的问题,以及在所有机制中都具有两种含义的对象,并且在两个机构中都具有两种方式)。但是,这些研究比使用几种量子力学模式要大得多:必须确定所有已知的浴缸,必须对实验进行实验,而“机械师”一词必须通过在适当的驱动式音调时进行实质性地进行实质性的能力来构成实质性的能力。
我们解决了一个新的环境,其中第二定律受到质疑:因果订单的量子叠加中的热量,由所谓的量子开关制定。这种叠加已被证明与通道的通信能力的增加有关,从而显然违反了数据处理不平等,并且有可能将热与寒冷分开。我们分析了此信息能力增加过程的热力学。我们展示了信息能力增加与热力学的兼容。我们表明,如果连续热力学的连续热量遵守热力学的第一和第二定律,则可能确实会增加信息能力,如果将它们放置在不确定的顺序上,此外,只有显着限制的增加才有可能。增加是以消耗热力学资源的代价,即与开关相关的连贯性的自由能。
多孔电极内反应电流分布不均匀是电池充电/放电过程中普遍存在的现象,并且常常控制着电池的倍率性能。多孔电极中的反应不均匀性通常归因于电解质和/或固体电极相内质量传输的动力学限制。然而,在这项工作中,我们发现它也受到电极材料固有热力学行为的强烈影响,特别是平衡电位对充电状态的依赖性:当平衡电位曲线的斜率降低时,电极反应变得越来越不均匀。我们采用数值模拟和等效电路模型来阐明这种相关性,并表明反应不均匀性的程度和由此产生的放电容量可以通过无量纲反应均匀度数来预测。对于平衡电位对电荷状态不敏感且表现出显著反应不均匀性的电极材料,我们展示了几种在空间上均化多孔电极内反应电流的方法,包括匹配电子和离子电阻、引入分级电子电导率和降低表面反应动力学。© 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/1945-7111/abb383]
有多种动机将引力理论扩展到爱因斯坦广义相对论 (GR) 之外。所有将这一理论与量子物理相协调的尝试都会以额外场、高阶运动方程或高阶曲率不变量的形式引入与广义相对论的偏差。例如,取弦理论中最简单的玻色弦理论的低能极限,得到 ω = − 1 布兰斯-迪克理论,而不是广义相对论,后者是标量张量理论的原型(ω 是布兰斯-迪克耦合)[1,2]。然而,研究替代引力理论的最有力动机来自宇宙学。例如,最受数据青睐的膨胀模型,即斯塔罗宾斯基膨胀,包括对广义相对论的量子修正。最重要的是,基于广义相对论的标准冷暗物质宇宙学模型无法令人满意地理解当今宇宙的加速膨胀:它需要引入一个令人惊奇的精细调节的宇宙常数或另一种形式的特设暗能量,而暗能量的性质仍然难以捉摸[3]。无论如何,即使承认暗能量的存在,冷暗物质的其他问题仍然无法解决,如哈勃张力[4,5]、对同样神秘的暗物质的要求,以及困扰宇宙学和黑洞物理学的奇点问题。因此,研究其他引力理论来解决或缓解这些问题至少是合理的。修改广义相对论最简单的方法是增加一个标量(大质量)自由度,这导致了 Brans-Dicke 引力[6]及其标量-张量推广[7-10]。 f(R) 类引力理论原来是标量张量理论的一个子类,它在解释当前没有暗能量的宇宙加速过程中非常流行([11],参见[12-14]的评论)。在过去的十年中,旧的 Horndeski 引力 [15] 被重新审视并进行了深入研究(参见[16]的评论)。这类理论被认为是最一般的标量张量引力,允许二阶运动方程,但后来人们发现,如果满足合适的退化条件,更一般的退化高阶标量张量 (DHOST) 理论可以允许二阶运动方程(参见[17]的评论)。Horndeski 和 DHOST 理论在其作用中包含任意函数,这使得场方程非常繁琐,研究起来也很困难。多信使事件 GW170817/GRB170817 [ 18 , 19 ] 证实了引力波模式以光速传播,这基本上排除了结构最复杂的 Horndeski 理论 [ 20 ],但仍存在许多可能性(对应于作用中的四个自由函数)。因此,很难掌握这些理论及其解决方案的详细物理意义,并且大部分工作必然局限于形式理论方面和寻找分析解决方案。
