摘要。本文采用计算机建模方法,考虑优化基于热管和冷却环的被动空气系统设计,以冷却大功率 LED 灯具。研究了冷却系统的热特性和质量特性,设计参数包括环间距离、环材料厚度和热负荷。结果表明,为了使 LED 光源外壳温度最小,冷却环之间的最佳距离应为 6 毫米,但在这种情况下,冷却系统的质量并不最小。为了降低灯具质量,选择冷却环之间的距离等于 8 毫米是合理的。这样,光源温度仅增加 1.8°С,即 2.2%,而冷却系统的质量减少 1357 克,即 20.5%。同时,将环厚度从 2 毫米降低到 0.8 毫米,还可以将质量减少 2700 克,即 48.6%。然而,这样做时 LED 光源外壳的温度会升高 5.9°С 。所提供的基于热管的冷却系统在 LED 光源晶体最高温度 135.5°С 下分散 500W 热功率时能够提供 0.131°С/W 的热阻。已经制定了开发冷却系统的应用建议。
UDC 66.045.1 乌利耶夫 L 。 M.,瓦西里耶夫 M. A.夹点 - 焦化工厂焦化产品加工过程的集成 介绍。能源价格上涨迫使依赖能源的国家实现能源供应多元化,并加快实施提高工业生产能源效率的计划。 2006年底,乌克兰国内生产总值的能源强度为每1美元0.89公斤标准燃料。美国。这个数字目前是欧洲国家中最高的。特别是在波兰,GDP 的能源强度为 0.34 千克立方米。吨/美元美国、德国 – 0.26,英国 – 0.23 [1]。尤其重要的是减少化学和冶金行业的能源消耗,这些行业的燃料价格占生产成本的大部分。这项工作研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的技术流程。粗苯是从焦炉煤气中直接用有机吸收剂吸收提取出来的,是一种化学(芳香)化合物的复杂混合物,其主要成分是苯烃(苯及其同系物),含量为(80~90)%。 [2]。较早地从研究过程中提取数据,为现有的 Δ T min(36 o C、20 o C 和 302 o C)、17.44 MW 的回收功率和 34.78 MW 的热功率构建了复合曲线。 ) 和冷 (33 .5 MW ) ut
在减轻碳排放的全球举措的背景下,功率电网经历了一个变革性的时期,其标志是可再生能源的整合不断升级(Ijeoma等,2024; Uddin et al。,2018; Christodoulides; Christodoulides et al。,2024)。这种范式转移,同时推动清洁能源的普遍采用,同时向电力系统注入了更大的不确定性(Choi等,2021)。此外,热功率单元的逐渐退役使该系统的灵活性资源紧张(Lin等,2024; Chen,2023)。这在峰值剃须区域(PS)和频率调节(FR)的区域尤为明显,该系统面临前所未有的压力(Rosewater和Ferreira,2016年)。为了有效应对这一挑战,大规模的电池储能系统(BESS)已成为突出的重要技术,是一种枢纽技术,用于强化不断发展的电力基础设施的可靠性和安全性(Parag and Sovacool,2016; Liu等,2019)。在不同的成熟度水平之间,锂离子电池占主导地位,占全球部署的70%以上。LifePo4电池,特别是由于其高能量密度,稳定性和安全特征,在储能电站中广泛使用(Kim等,2015; Orikasa等,2013)。行业基准要求,对于220AH储能电池,在标准PS和FR操作期间,目前的速率不得超过0.5°C,以维护运营完整性(Panda等,2022)。尽管如此,关于此操作方案的缺乏特定分析。必须深入研究系统的实验研究,以剖析
除批量模式之外的燃烧系统,反向下吸式炉(商业名称为 Oorja)运行。在过去四年中,在 JGI 火灾与燃烧研究中心,已经构思、实现和商业化了几种生物质清洁燃烧装置。这些装置构成了连续燃烧系统,主要依赖于喷射器诱导通风,需要更高的空气供应装置功率。在开发和商业化的品种中,有 (a) 具有倾斜炉排和空气供应装置的装置,适合自行进料不同密度的颗粒和类似燃料,(b) 包括用于稻壳等燃料的移动炉排的装置,(c) 水平配置的基于喷射器的空气供应和 (d) 垂直布置的喷射器配置,具有单盘或多盘装置。应用包括每小时一到几百公斤的功率水平,用户定义的可变热功率需求、短或长的燃烧区、有限的系统高度、广泛变化的密度、燃料形状和大小,例如木柴、废木、腰果壳废料、玉米芯和其他农业残留物,所有这些都采用清洁燃烧模式。虽然从燃烧科学的角度来看,期望满足这些对清洁燃烧气体燃料(如天然气或液化石油气)的需求已经足够具有挑战性,但真正最具挑战性的问题是设计一种家用烹饪解决方案(1 千克/小时水平),其生物质范围如上所述,因为
摘要。热能存储(TES)已成为现代电力工程的主要研究课题之一。TES 设备和系统的设计取决于其应用。不同的热能存储材料(例如固体、液体或相变材料)可应用于 TES 设备。热能存储材料的选择主要取决于 TES 设备的热功率和工作温度范围。这些设备和系统应用于不同的能源转换系统,包括太阳能发电厂或热电联产 (CHP) 站。在其他行业(例如冶金业)中也会考虑使用 TES 设备。TES 设备在有机朗肯循环 (ORC) 系统中的应用前景尤其光明。这些系统通常利用浮动热源,例如太阳能、废热等。因此,TES 设备可用作 ORC 系统的蒸发器,以稳定这些波动。本文讨论了应用于 ORC 的 TES 设备中可能使用的热能存储材料。此外,还报告了与评估参数相关的建模结果,这些评估参数可用于确定使用不同低沸点工作流体的 ORC 系统的 TES 设备的尺寸。工作流体的热性质取自 CoolProp。还提供了不同 TES 材料的热容量函数,并采用 MATLAB 进行计算。结果表明,基于模拟,TES 与工作流体的自然特性梯度 (ζ (T b )) 趋于减小。本文提出的结果提供了一个新的观点,可供科学家和工程师在设计和实施专用于 ORC 动力系统的 TES 蒸发器时使用。
本研究分析了备用电源工艺的性能,该工艺使用新型化学循环填料床空气反应器氧化一批还原固体,同时加热高压流动空气。在这种布置中,固体被垂直于主空气流的扩散控制氧气流缓慢氧化,因此对所有反应粒子施加了非常长的氧化时间。由于随着反应的进行,O 2 向未反应的氧载体颗粒扩散的阻力增加,可以预期反应堆的热功率输出会随着时间的推移而衰减。在这项工作中,研究了反应堆和发电厂形成的动态系统的集成,发电厂利用反应堆的可变热输出来发电。评估了不同的案例研究,以实现能源生产的脱碳和可再生能源的储存。在所有情况下,反应堆的最大额定功率输出为 50 MW th,采用铁基或镍基颗粒作为氧载体。壁孔附近的质量和热传递的简化模型允许定义操作窗口和反应堆尺寸。在所选的案例中,每个单反应器在放电模式下运行约 4 – 5 小时(取决于工厂配置),作为备用发电机,将压缩空气流加热至约 1000 ◦ C,能量密度在 816 至 2214 kWh th /m 3 之间。研究了集成在新型化学链燃烧 (CLC) 反应堆中的回热式、蒸汽喷射式和联合循环发电厂架构中的燃气轮机。对于使用单反应器配置并通过有机朗肯循环 (ORC) 底部系统利用余热发电的系统,计算出循环效率高达 49%。还研究了一种更灵活的多反应器配置,以解决放电期间不可避免的功率输出衰减并提供功率输出可控性。当使用 H 2 作为还原气体时,平准化电力成本 (LCOE) 估计与文献中的系统元素相当。在能量充注阶段使用沼气还原固体被发现特别有利,对于使用铁基固体的参考反应器系统,LCOE 值介于 ~ 120 至 175 欧元/兆瓦时之间。如果在还原阶段捕获的 CO 2 被储存起来,这还可以实现负 CO 2 排放。