NAVSEA 标准项目 FY-25 项目编号:009-70 日期:2023 年 10 月 1 日 类别:I 1。范围:1.1 标题:无人船密闭空间进入、认证、防火、防火和内务管理;完成 2。参考文献:| 2.1 29 CFR 第 1915 部分,船厂就业职业安全与健康标准 2.2 29 CFR 第 1910.134 部分,职业安全与健康标准,呼吸防护 2.3 NFPA 标准 312,建造、修理和停泊期间船舶的防火标准 2.4 美国政府工业卫生学家会议 (ACGIH) 化学物质和物理因素的阈值限值 2.5 NAVSEA OP-4,海上弹药和爆炸物安全 3.要求: 3.1 遵守 2.1 至 2 的要求。3 和本项目用于无人驾驶船舶,以确定船上的储罐、空间和相关管道(包括相邻的储罐、空间和管道)中是否存在爆炸性或其他危险气体,并控制热加工和进入这些空间,以防止在完成本工作订单期间损坏船舶或伤害人员。3.1.1 在打开储罐或空隙前至少一天,向主管提交一份需要打开或认证的储罐或空间清单的清晰副本(采用经批准的可传输媒体)。3.1.1.1 在收集、保存和转移 (CHT) 和车用汽油 (MOGAS) 储罐、空间或相关管道中完成工作时,遵守 NAVSEA 标准项目的额外要求。
1迈克尔·奥克帕拉农业大学食品科学技术系,Umudike,P.M.B。7267,尼日利亚阿比亚州乌米亚州。2尼日利亚巴耶尔萨州Yenagoa国际旅游与酒店研究所的酒店管理和技术部(食品科学技术部门)。通讯作者电子邮件:ananaunyimeabasie@yahoo.com于2024年1月14日收到; 2024年2月20日接受;发表于2024年3月4日摘要:研究研究了汤的多样性,逆转温度和时间如何影响f₀,从而测量罐装过程中的热渗透和灭菌。在玻璃容器中煮熟,瓶装和灭菌,两种著名的尼日利亚尼日利亚美味佳肴,Egusi和Ogbono汤。这项研究的目的是确定热加工条件和汤品种如何影响汤的灭菌程度,以方便起见,而没有冷藏量就会影响更长的保质期。使用常规成分和程序制成汤,然后将其倒入玻璃罐中,并在110°C至121°C的温度下进行消毒60至90分钟。使用位于罐中心的热电偶测量玻璃罐假定的最慢的加热区域的汤的热量吸收。根据温度和时间组合,将汤分批量化。使用周期性温度和热吸收测量来计算该过程的F₀。在大多数灭菌方案中,F₀范围从1.0494到40.1739分钟,Egusi汤显示出更快的热量吸收和更大的F₀。(2024)。直接res。J. Agric。 卷。J. Agric。卷。要确保肉毒杆菌煮在汤中,需要在至少115°C的情况下加热加热。仅灭菌温度显着(p <0.05)影响了灭菌程度,f₀。线性模型显着描述了F₀数据,具有可接受的R²(0.8579),Adjecr²(0.8275),Predr²(0.7653)(0.7653)和足够的精度(12.7227)。F₀模型可能是为罐装土著汤的撤回条件的可靠指南。关键字:汤,玻璃罐头,热加工,灭菌,热量渗透,f fucity:Anana,U.E.,Onwuka,G。I.,Obasi,N。E.和Irechukwu,F。I.过程变量对灭菌值的影响,玻璃罐装本地汤的F₀。食品科学。12(1),pp。83-91。 https://doi.org/10.26765/drjafs99875657。 本文根据创意共享归因许可4.0的条款发表。 在非洲引言,食用多叶蔬菜的最常见方法是将它们用于准备汤。 绿叶蔬菜的利用是非洲文化遗产的一部分,因为它们在非洲家庭的习俗,传统和饮食文化中起着重要作用(Sanusi和Olurin,2012)。 汤占据了尼日利亚房屋中饮食的重要组成部分(Bamidele等人 ,2017年)。 对即食和的需求不断增长83-91。 https://doi.org/10.26765/drjafs99875657。本文根据创意共享归因许可4.0的条款发表。在非洲引言,食用多叶蔬菜的最常见方法是将它们用于准备汤。绿叶蔬菜的利用是非洲文化遗产的一部分,因为它们在非洲家庭的习俗,传统和饮食文化中起着重要作用(Sanusi和Olurin,2012)。汤占据了尼日利亚房屋中饮食的重要组成部分(Bamidele等人,2017年)。对即食和
拟议的研究涉及“主题领域 1:将海藻转化为低碳燃料和生物产品”,并计划开发一种低成本连续催化热液液化 (CHTL) 工艺 (TRL2→4),该工艺能够处理腐蚀性原料,以展示将褐藻 Saccharina latissima (糖海带) 中的多糖最佳转化为低碳、稳定且高能量密度 (>35 MJ/kg) 的生物油/生物原油前体 (产量 >45 wt.%),用于可持续航空燃料 (SAF)。为了进一步提高可行性和可持续性,我们建议探索 i) 储存和预处理方法,以保存多糖,同时降低灰分/盐含量;ii) CHTL 反应器系统的低成本涂层,以承受与连续、热效率高、高通量反应器运行相关的腐蚀性反应条件。我们工艺开发工作的总体目标是制定适用于农场藻类生物精炼模式的糖海带连续 CHTL 加工蓝图,使温室气体排放减少 60% 以上(石油原油基线)。所提出的方法解决了目前在以下方面的知识空白:1)节能高效的海带储存,保存多糖;2)HTL 原料的高盐/灰分管理;3)生物原油的稳定性和热值;4)连续水热加工以获得高能生物原油;5)反应器腐蚀问题,以解决在更高 TRL 下生产生物原油的可行性。该项目将使用由低成本 304H 钢制成的具有耐腐蚀涂层的 CHTL 反应器系统,展示从糖海带中连续生产 500 小时或 3 周的油,并在考虑 SAF 途径的同时,通过 TEA 和 LCA 展示经济和环境影响。
a. 至少需要对以下活动实施正物理隔离 (PPI):i. 涉及进入密闭空间的工作。ii. 在含有或曾含有易燃工艺介质且尚未确认残留物已清除的工艺管道或设备上进行明火热加工。b. 对于涉及打开烃类或化学服务中的工艺、系统和/或设备的所有其他活动,以及无论服务介质如何的长期隔离,PPI 应是首选和首先考虑的隔离方法。i. 如果 PPI 不是一种可行的隔离方法,JO 应评估并确定替代隔离方法,并确定所选隔离方法所需的任何额外和/或替代控制和验证。ii. JO 应确定有权批准替代 JO 隔离方法的组织的职位/级别。指导:记录选择除 PPI 之外的隔离方法的理由有助于证明符合要求 6.b。请参阅附录 E 了解 JO 隔离方法确定流程。参见隔离矩阵 JO 应根据所涉及的危险和所采用的缓解方法,按照控制层次结构确定隔离方法。有三种主要隔离类别可获准实施。隔离的典型方法可在附录 D 中找到。 • 正物理隔离 (PPI) - 通过移除阀芯、插入百叶窗或关闭百叶窗,将要操作的工厂/设备与系统的其他部分完全隔离。 • 已验证的阀门隔离 - 带阀门的隔离,在进入系统之前,可以通过通风/排气点确认隔离的有效性。 • 未验证的阀门隔离 - 未确认隔离有效性的带阀门隔离。 附录 D 中显示的排气阀用于证明阀门中装有危险物品并控制泄漏。用于控制泄漏的各种排气阀配置和操作要求
15.补充说明由船舶结构委员会赞助。由其成员机构 16 共同资助。摘要 使用有限元和封闭式方法分析了焊接铝加固板,以确定焊接导致的强度降低。目前商业和军事对大型高速船舶的兴趣导致了铝制单体船、双体船和三体船的发展。在这些船舶的设计中,尽量减少轻型船舶的重量,从而减少结构重量,具有重要意义。焊接铝会导致焊缝周围区域的材料性能发生重大变化。5xxx 系列和 6xxx 系列合金的强度很大一部分来自冷加工或热加工,这些工艺受到焊接热输入的影响。焊接过程中受热影响的区域称为热影响区或 HAZ。对于通过熔焊连接的高强度 5xxx 和 6xxx 系列合金,HAZ 通常比母材弱 30% 到 50%。铝中 HAZ 强度下降 30% 到 50% 尚未得到充分研究。当前的设计方法假设所有金属都会具有这种降低的强度,而局部弱化已被证明对压缩和拉伸的整体强度影响较小。这种方法可能会严重低估焊接结构的强度,并可能对最终的容器设计造成重大的重量损失。本研究旨在为修改设计标准提供依据。针对不同的板-加强筋组合以及 AL5083 和 AL6082 开发和分析了细网格有限元模型。使用了非线性应力-应变曲线。使用以下属性执行非线性有限元分析:a)。母材,b)。HAZ,c)。母材和 HAZ(延伸 3 倍板厚)。针对拉伸、压缩和弯曲载荷分析了这些模型。对于这三种情况中的每一种,都制定了极限状态标准来比较结果。
ME 201 动力学 (3-0-3) 粒子直线和曲线运动的运动学。粒子和粒子系统的动力学。刚体的旋转和平面运动的运动学。功和能量关系。冲量和动量原理。平面运动中的刚体动力学。先决条件:CE 201。ME 203 热力学 I (3-0-3) 系统和控制体积概念。纯物质的性质。功和热。应用于系统和控制体积的热力学第一定律、内能、焓。热力学第二定律。卡诺循环、熵、可逆和不可逆过程。稳态、稳流、均匀态、均匀流和其他过程的应用。先决条件:MATH 102、PHYS 102 ME 204 热力学 II (3-0-3) 蒸汽动力循环、兰金循环、再热循环和再生循环。麦克斯韦关系、理想气体和真实气体、状态方程、广义图表。气体-蒸汽混合物、湿度图、理想溶液。化学反应。燃料和燃烧过程。先决条件:ME 203。ME 205 材料科学(针对非 ME 学生)(2-3-3)工程材料特性简介:机械、电气和化学。晶体学基础。固体中的杂质和缺陷。原子振动和扩散。单相金属和合金;弹性和塑性变形、再结晶、断裂、疲劳和蠕变。多相材料;重点是铁-铁碳化物系统的相图。热处理工艺,如退火、正火和淬火。广泛使用的工程材料的研究;钢铁、塑料、陶瓷、混凝土和木材。先决条件:CHEM 102、MATH 102 ME 210 机械工程制图与图形 (2-3-3) 通过研究正交投影对机器部件和组件进行图形解释,包括辅助视图;剖面图和全尺寸标注;将设计说明转化为详细图和装配图;绘图惯例,包括焊接件、管道、参考和表面光洁度符号;根据设计要求选择公差。先决条件:无 ME 216 材料科学与工程 (3-0-3) 固体中的原子键合、键合力和能、一次键和二次键。固体中的杂质和缺陷:点、线和界面缺陷。晶体结构、晶格、晶胞和晶体系统、密度计算、晶体方向和平面、线性和平面原子密度。原子振动和扩散。材料的机械性能。弹性和塑性变形和再结晶。单相和多相材料的相图,重点是铁-铁碳化物系统(钢和铸铁)。金属和合金的热加工:退火、正火、淬火和回火、复合材料、聚合物。冲击、断裂、疲劳和蠕变特性以及断裂力学简介。先决条件:CHEM 101、MATH 102、PHYS 102 和共同要求:ME 217
摘要 立法和市场力量要求越来越多的产品声明其环境影响,并进而影响到供应链的各个环节。本文讨论了隔热耐火材料的“从摇篮到大门”生命周期评估 (LCA),包括获取准确的原材料数据和将范围 1 和范围 2 的排放归因于单个产品的挑战。隔热耐火产品可减少热加工过程中的碳排放量,本文介绍了一种区分一流产品和消费级产品的方法。该方法利用热流模型和燃料碳强度计算,涵盖耐火衬里的整个预期寿命。通过生命周期评估测量碳足迹的驱动力 根据联合国政府间气候变化专门委员会 (UN IPCC) 的报告,气候变化导致全球气温升高 1 ,从而导致海平面上升和极端天气事件更加频繁。全球变暖的主要原因是人为温室气体 (GHG) 排放量的增加。立法正在推动对越来越详细的环境影响数据进行测量和申报的必要性。过去几年,许多司法管辖区都要求公司的年度董事报告必须包含能源使用和温室气体排放量 2,3 。最近,欧盟推出了碳边境调整机制 (CBAM) 4 ,这是一种对进入欧盟的碳密集型商品生产过程中排放的碳进行公平定价的工具,并鼓励非欧盟国家进行更清洁的工业生产。CBAM 最初将适用于某些商品和选定前体的进口,这些商品和前体的生产是碳密集型的,并且碳泄漏风险最大:水泥、钢铁、铝、化肥、电力和氢气。这些和其他立法要求公司详细跟踪其范围 1(直接)、范围 2(间接能源排放)以及范围 3(其他间接)环境排放,范围 3 正在日益增加。准确计算范围 3 需要了解原材料和组件对环境的影响。随着利益相关者的观点转向更重要的环境意识,企业在环境、社会和治理 (ESG) 三大支柱中优先考虑可持续性变得至关重要。因此,公司不能只关注一个支柱(例如,只关注治理目标而忽视环境影响)。这样做可能在短期内有利可图,但不利于公司的长期生存能力,因为监管处罚、投资者或其他利益相关者的利益和公众舆论可能会对公司产生负面影响。相比之下,每家公司都会有环境足迹,在价格变得如此之高以至于影响治理支柱之前,减少这种足迹的影响是有限的。随着公众关注度的提高,越来越多的客户询问作为制造过程一部分的行业温室气体排放情况,并要求提供产品对环境影响的信息。上述因素正在推动对其产品的环境影响进行测量和声明的需求。耐火材料也不例外。事实上,它们在 CBAM 中提到的碳密集型产品生产中的影响力,使耐火材料成为
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
3.1.1.2 对于装有或曾经装有燃油(包括 F-76 和 JP-5)的燃油舱或空间,除了 2.2 要求的大气测试外,还应按照 2.5 的要求对柴油(CAS 编号 68334-30-5;68476-30-2;68476-31-3;68476-34-6、77650-28-3)进行总烃测试,并将总烃测试结果记录在船舶化学家证书或合格人员的测试/检查记录中。3.1.2 聘请国家消防协会 (NFPA) 认证的船舶化学家或 NFPA 讲师为合格人员提供初始和年度更新培训。初始培训课程时长必须至少为 24 小时。年度更新培训必须至少为 8 小时。 3.1.2.1 保留一份最新的指定合格人员名册和 3.1.2 中要求的培训完成证书副本,以供监理参考。在监理要求时,以经批准的可传输介质提交一份清晰易读的特定文件副本。3.1.3 在空间内工作期间,每次进入受影响空间时,都要张贴一份海洋化学家证书、认证工业卫生师的测试/检查记录或合格人员的测试/检查记录副本。在要求时,还必须将 MCC 或测试/检查记录的副本送至监理指定的位置。如果确定该空间对工人不安全或对热加工不安全,则必须张贴相应的公告,并立即通知其他受影响的承包商、监理和船舶部队。张贴的副本必须清晰可见且可读。 3.1.3.1 需要经认证的 MCC 或经认证的工业卫生师的测试/检查记录来支持工作操作的空间的初始认证必须有效,直到条件发生变化导致证书或测试/检查记录失效。合格人员必须按照 MCC 或经认证的工业卫生师的测试/检查记录的要求进行相同的大气测试。3.1.3.2 对于员工将进入的认证空间,合格人员必须每天在员工进入之前,根据需要,至少在员工进入之前,对每个经认证为“有限制进入”或“对工人安全”的空间进行目视检查、测试和记录。如果某一天不进入某个空间,则无需由合格人员进行检查和测试。如果条件没有发生变化,初始 MCC 仍然有效,除非 MCC 上另有说明。 3.1.3.3 对于受热工影响的经认证空间,合格人员必须根据需要经常目视检查、测试和记录每个经认证为可安全进行热工的空间,至少每天在开始热工之前进行一次,以确保维持证书规定的条件。当热工持续进行时,必须对受影响的空间进行目视检查、测试和记录。并每天进行记录以保持“热作业安全”认证。3.1.3.4 如果胜任人员发现认证空间内的条件不符合认证的适用要求,则必须停止该空间的工作,并且直到该空间经过海洋化学家的重新认证后才能恢复。3.1.3.5 对于根据 2.2 只要求胜任人员测试和检查的空间,胜任人员必须根据需要经常对每个空间进行目视检查和测试,并且至少在进入或开始热作业之前每天进行一次,以确保条件安全。
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?