摘要:利用高温固体循环实施电力热化学储能 (TCES) 将使能源系统受益,因为它能够吸收可变可再生能源 (VRE) 并将其转化为可调度的热能和电能。本文以瑞典为例,介绍了 TCES 综合区域供热 (DH) 生产过程,评估了其技术适用性,并讨论了一些实际意义和其他实施方案。针对九种特定场景计算了装有铁基氧化还原回路的生物质电厂的质量和能量流,这些场景说明了其在可变性和价格不同的发电组合下的运行。此外,还研究了两种电解槽(低温和高温版本)的使用情况。结果表明,对于瑞典而言,所提出的方案在技术上是可行的,能够利用现有的区域供热厂满足全国区域供热需求,估计工艺能源效率(电能转化为热能)为 90%。结果还表明,对于瑞典整个区域供热厂的改造,中间方案所需的铁库存约为 280 万吨,分别占国家储量的 0.3% 和国家工业年冶金产量的 11.0%。除了可调度的热量外,该过程还会产生大量不可调度的热量,尤其是在使用低温电解槽的情况下。增加的发电能力使该过程能够满足热量需求,同时降低本文计算的充电侧最大容量。
我们研究了在有限的子系统上支撑的量子状态的普遍,均匀分布的出现,该量子状态通过投射介绍系统的其余部分而引起的。被称为深度热化,这种现象代表了比常规热化更强的量子多体系统中平衡的形式,这仅限于可观察到的一体组成的阀门。虽然在一个维度中存在量子电路模型,在该模型中可以证明这种现象可以准确地出现,但这些现象是特殊的,因为深层的热化是在与常规热化的完全相同的时间发生。在这里,我们提出了一个完全可溶解的混乱动态模型,其中可以证明这两个过程在不同的时间尺度上发生。该模型由一个有限的子系统组成,该子系统通过较小的收缩结合到有限的随机基质浴场,并突出显示了局部性和不完善的热化在约束这种通用波函数分布的形成中的作用。我们测试了针对精确数值模拟的分析预测,从而确定了出色的一致性。
小型研发项目设施的选址、建设、改造、运营和退役;常规实验室操作(如制备化学标准和样品分析);以及小规模试点项目(通常少于 2 年),通常在示范行动之前进行,以验证概念,前提是建设或改造将在之前被扰乱或开发的区域内或毗邻(活跃的公用设施和当前使用的道路很容易到达)。示范行动不包括在这一类别中,示范行动是指大规模开展的行动,以显示一项技术是否可在更大规模上可行并适合商业部署。B5.15 小规模可再生能源研发和试点项目
摘要:对利用阳光和空气生成甲烷 (CH 4 )、甲醇 (MeOH) 和乙醇 (EtOH) 的电化学和热化学方法的太阳能到燃料 (STF) 转化效率进行了比较研究。本文研究的系统级 STF 转化效率同时考虑了转化过程和原料捕获过程。具体来说,在本分析中,假设原料 CO 2 和 H 2 O 是从空气中捕获的。对于热化学转化,考虑了一步和两步方法,包括通过 Sabatier 反应生成 CH 4,以及通过 CO 和 H 2 结合逆水煤气变换反应 (rWGS) 生成甲醇 (MeOH) 和乙醇 (EtOH) 的两步过程。然后将用于生成 CH 4 、MeOH 和 EtOH 的最先进的电化学和混合电化学-热化学过程以及相应的系统级 STF 转化效率与热化学方法进行了比较和对比。还介绍了电化学 CO 2 还原反应的目标过电位和法拉第效率 (FE),以与不同操作场景中的热化学方法进行比较。关键词:电化学 CO 2 还原、热化学 CO 2 还原、太阳能转化为燃料的效率、碳质燃料、直接空气捕获■ 介绍
摘要:聚光太阳能能够为不同应用提供高温工艺流。一种有前景的应用是需要 800 ◦ C 以上蒸汽和空气的高温电解过程。为了克服太阳能的间歇性,需要储能。目前,这种温度下的热能主要可以作为显热存储在填料床中。然而,这种存储在几个循环后会损失可用的存储容量。为了改进这种存储,建立了一个使用空气作为传热介质的一维填料床热能存储模型,并用于研究和量化加入钙钛矿类不同热化学材料的好处。钙钛矿经历非化学计量反应延伸,可在更大的温度范围内利用热化学热。考虑了三种不同的钙钛矿:SrFeO 3 、CaMnO 3 和 Ca 0.8 Sr 0.2 MnO 3 。总共 15% 的显热储能被一种钙钛矿取代,并分析了反应材料的不同位置。研究了反应热对 15 次连续充电和放电循环中储能性能和热降解的影响。基于所选的变化和反应材料,储能容量和有用能量容量均有所增加。在储能系统冷入口/出口附近进行部分替换可将总储能容量提高 10.42%。要充分利用热化学材料的优势,合适的操作条件和材料的合适放置至关重要。
与宏观环境耦合的开放系统中的热化通常从系统还原状态到平衡状态的松弛角度进行分析。较少强调浴状态的变化。然而,如前文对某些特定模型所示,在热化过程中,环境可能会经历非平凡的动力学,其冯·诺依曼熵的变化表明,时间尺度甚至比系统的松弛时间还要长;这种行为称为后热化。我们通过模拟各种系统及其环境的完整动态来更详细地分析这种现象。具体而言,后热化被定性地解释为系统与浴之间最初建立的相关性重新转换为环境中自由度之间的相关性的结果。我们还介绍了一些示例系统,其中由于非马尔可夫动力学或存在相互作用,这种重新转换受到抑制。
理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
1 中国科学技术大学合肥国家微尺度物质科学研究中心、现代物理系,安徽合肥 230026 2 中国科学技术大学中国科学院上海分中心量子信息与量子物理卓越创新中心,上海 201315 3 上海量子科学研究中心,上海 201315 4 中国科学院物理研究所,北京 100190 5 中国科学院大学物理学院,北京 100190 6 日本理化学研究所理论量子物理实验室,埼玉县和光市 351-0198,日本 7 松山湖材料实验室,广东东莞 523808 8 中国科学院大学中国科学院拓扑量子计算卓越创新中心,北京 100190
Co 0.1 Fe 0.9 Al 2 O 4 [28] 174.1 2.08 1,450 < 400 250 Mn 0.5 Fe 0.5 Al 2 O 4 [28] 173.4 1.38 1,450 < 400 340 La 0.6 Sr 0.4 MnO 3 [29] 221.3 3.80 1,400 < 600 650 † CeO 2 [34] 172.1 7.00 ‡ 1,500 ~700 130 分析基线 - 4.00 - - 200 * T TR 和温度波动是近似值,取决于各种系统参数。† 可能实现的生产率。‡ 铈的成本逐年波动很大;选择了中等价格。
目前,已经设计了多种储热技术,以匹配系统。1,2这些技术通常可分为三大类:显热储热、潜热储热和热化学储热。7-11但前两种技术更容易损失守恒的热能,因此不适合长期储热。12在这些技术中,热化学储热利用可逆化学反应释放和储存热量,由于其良好的储热密度,热能利用效率最高。13因此,可以研究大量材料用于广泛工作温度范围内的热化学储热。12-19Kubota等人9,20将多孔碳和吸湿材料与氢氧化锂(LiOH)制成低温储能材料,储热性能明显提高。这项研究证明