目前,已经设计了多种储热技术,以匹配系统。1,2这些技术通常可分为三大类:显热储热、潜热储热和热化学储热。7-11但前两种技术更容易损失守恒的热能,因此不适合长期储热。12在这些技术中,热化学储热利用可逆化学反应释放和储存热量,由于其良好的储热密度,热能利用效率最高。13因此,可以研究大量材料用于广泛工作温度范围内的热化学储热。12-19Kubota等人9,20将多孔碳和吸湿材料与氢氧化锂(LiOH)制成低温储能材料,储热性能明显提高。这项研究证明
有人提出在与碳捕获与储存兼容的运行条件下,注入蒸汽来减缓钙循环 (CaL) 过程中 CaO 反应性的衰减。然而,目前尚不清楚蒸汽所带来的明显优势是否能在将 CaL 工艺整合为聚光太阳能发电厂 (CaL-CSP) 中的热化学储能系统所需的不同运行条件下保持。在这里,我们研究了蒸汽在与 CaL-CSP 方案兼容的条件下的影响,并评估了仅在一个阶段注入蒸汽(煅烧或碳化)时的影响,以及蒸汽在整个循环中存在时的影响。这里介绍的结果表明,蒸汽可提高 CO 2 闭环中 CaO 多循环的性能,以达到与惰性气体下中等温度下相似的残余转化值。此外,还发现颗粒越大,多循环活性的增强越明显。
摘要 - 在德国能源市场中可再生能源的电力越来越大,需要存储系统来缩小生产和需求之间的差距。基于CAO和CA(OH)2的可逆反应的热化学存储系统是高温热储能概念最有前途的方法之一。在本文中,开发了一个概念,将大规模的热化学存储系统集成到工业热和发电厂中。在高能源中产生了混合整数线性问题,以对具有和没有存储系统的工业热和发电厂进行经济优化。通过固定CSTR MATLAB模型的输入和输出流的相关性,可以实现存储系统的线性化。在2019年,2030年和2040年的每小时模拟借助能源价格预后证明了使用存储系统运营的经济利益。在2019年,2030年和2040年的每小时模拟借助能源价格预后证明了使用存储系统运营的经济利益。
整齐地排列,并且可以接受管状和间质互化结构。au @pda-peg-mtx nps组中glomeruli的体积和大小不一致。肾小球中的细胞比正常人增加,细胞外基质的增加比正常情况大,并且肾小管上皮细胞的排列不规则。肾小管的结构尚不清楚。NIR+AU @PDA-PEG-MTX NPS组与对照组相似。在对照组和两个实验组中,肺组织结构相对清晰,整个肺泡结构相对完整,肺泡壁的厚度相对正常,支气管狭窄的程度相对轻。肺泡上皮细胞,嗜酸性粒细胞和淋巴细胞很少浸润
手稿版本:作者接受的手稿 WRAP 中呈现的版本是作者接受的手稿,可能与已发布的版本或记录版本不同。 永久 WRAP URL:http://wrap.warwick.ac.uk/156576 如何引用:请参阅已发布的版本以获取最新的书目引用信息。 如果已知已发布的版本,则上面链接的存储库项目页面将包含有关访问它的详细信息。 版权和再利用:华威研究档案门户 (WRAP) 在以下条件下使华威大学研究人员的这项工作开放获取。 © 2021 Elsevier。 根据知识共享署名-非商业-禁止演绎 4.0 国际许可 http://creativecommons.org/licenses/by-nc-nd/4.0/。
模式识别算法通常用于简化亚原子物理实验中轨道重建的挑战性和必要步骤。在歧视相关相互作用的帮助下,模式识别旨在通过隔离感兴趣的信号来加速轨道重建。在高碰撞率实验中,这种算法对于确定是否保留或从给定相互作用中保留或丢弃信息至关重要,甚至在数据传输到磁带之前。随着数据速率,检测器的解决,噪声和效率低下的增加,模式识别在计算上变得更具挑战性,激发了更高效率算法和技术的发展。量子关联记忆是一种方法,旨在利用量子机械现象以获得学习能力的优势,或者可以存储和准确召回的模式数量。在这里,我们研究基于量子退火的量子关联记忆,并将其应用于粒子轨道分类。我们专注于基于量子关联记忆模型(QAMM)召回和量子内容 - 可调地理内存(QCAM)召回的歧视模型。我们使用D-Wave 2000Q处理器作为测试台将这些方法的分类性能表征为函数检测器分辨率,模式库的大小和效率低下。使用溶液状态能量和分类标签嵌入了溶液状态中的歧视标准。我们发现,基于能量的QAMM分类在较小的模式密度和低探测器效率低下的状态下表现良好。相比之下,基于州的QCAM可实现相当高的准确性回忆,以实现大模式密度和对各种检测器噪声源的最大回忆精度的鲁棒性。
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
摘要:流化床反应器中 CaCO 3 的循环碳化-煅烧不仅提供了捕获 CO 2 的可能性,而且可以同时用于热化学能量存储 (TCES),这一特性将在未来发挥重要作用,因为不可调度可变发电(例如风能和太阳能)的份额将不断增加。本文对同时进行 TCES 和 CO 2 捕获的工业规模钙循环 (CaL) 工艺进行了技术经济评估。该工艺假定通过出售可调度电力和向某个附近的排放者提供 CO 2 捕获服务来获利(即不考虑 CO 2 的运输和储存)。因此,该工艺与附近的另外两个设施相连:一个可再生的不可调度能源,用于为储存器充电;一个工厂,用于捕获烟气流中的 CO 2,同时释放储存的 CO 2 并产生可调度的电力。该工艺可以在室温下长期储存而不会产生任何显著的能量损失,本文根据特定边界条件下的给定每日能量输入来确定其尺寸,这些边界条件要求充电部分每天稳定运行 12 小时,而放电部分每天 24 小时提供稳定输出。先计算不同工艺要素的相互耦合质量和能量平衡,然后确定主要工艺设备的尺寸,最后通过文献中广泛使用和验证的成本函数计算该工艺的经济性。通过盈亏平衡电价 (BESP)、回收期 (PBP) 和每吨二氧化碳捕获成本来评估该工艺的经济可行性。本研究不包括可再生能源的成本,但评估了其如果纳入系统对工艺成本的潜在影响。还评估了计算成本对主要工艺和经济参数的敏感性。结果表明,根据最现实的经济预测,不同规模的工厂的 BESP 成本在 141 至 -20 美元/MWh 之间,使用寿命为 20 年。当将同一过程评估为碳捕获设施时,其成本在 45 至 -27 美元/吨 CO 2 捕获之间。流化床反应器的投资成本占计算资本支出的大部分,而提高碳酸化器转化率被认为是降低全球成本的一项重要技术目标。
奖项#DE-EE0006536 DOE总资金:$ 1,182,789首席研究员:Adrienne Lavine与K Lovegrove(IT Power Australia),P Kavehpour,R Wirz,Sepulveda,A Sepulveda,H Aryafar,H Aryafar,D Simonetti 3 Simonetti 3
在1400/1100°C的循环温度下,可以在SNL处的垂直流动反应器中测量材料的氢生产性能。在此期间,将评估一组新组合物的氧化还原热力学和氢产生性能。焓预测的DFT模型将根据对以前时期测得的材料的氧化还原热力学的反馈进行改进,新型相变材料将通过此期间的计算预测来筛选。