研究经历 南加州大学(2015 年 8 月 - 至今)附属教员 - MC Gill 复合材料中心 研究复合材料制造并指导学生研究员 南加州大学(2014 年 1 月 - 2015 年 8 月)博士后学者顾问:Steve Nutt 教授 - MC Gill 复合材料中心项目:复合材料加工 - 材料效率和可持续制造。加州大学河滨分校(2013 年 1 月 - 2014 年 1 月)博士后学者顾问:David Kisailus 教授 - 仿生学和纳米结构材料实验室项目:研究生物矿化生物中的结构-功能关系,并制造受生物启发的复合材料。南加州大学(2007 年 8 月 - 2012 年 12 月)研究生助理顾问:Steve Nutt 教授 - MC Gill 复合材料中心项目:使用非热压罐制造法生产的碳纤维环氧复合材料中孔隙形成的参数研究。
摘要:可充电锌空气电池 (ZAB) 具有高理论能量密度、高电池电压和环境友好性,可在向更清洁、更可持续的能源系统过渡中发挥重要作用。ZAB 的空气阴极是预测电池整体性能的主要决定因素,因为它分别负责在放电和充电过程中催化氧还原反应 (ORR) 和氧释放反应 (OER)。在本研究中,使用基准双功能氧电催化剂 (Pt/C-RuO 2 ) 对空气阴极的结构进行了详细的优化研究。根据商用气体扩散层 (GDL) 的选择、热压催化剂层 (CL) 的影响以及集电器的最佳孔径优化了空气阴极的组成和结构。本研究中的最佳阴极显示最大功率密度(PD max)为167 mW/cm 2 ,往返效率和电压间隙(E gap )分别为59.8%和0.78 V,表明本研究中提出的空气阴极制备方法是提高ZAB整体性能的一种有前途的策略。
摘要:外延和晶圆键合系统界面的研究借鉴了材料科学、电气工程和机械工程,涉及先进的材料表征技术。低温晶圆键合已被用来生产各种各样的材料组合,最显著的是绝缘体上硅结构。然而,对外延和键合界面的修改会影响这些界面上的电或热传输。在本演讲中,我们提供了几个半导体和金属基系统的例子,以解决研究和修改不同、技术上重要的界面组合作为处理(如退火)的功能的能力。材料组合范围从 Si|Si 和 Si|Ge 到宽带隙材料组合,包括 GaN|Si 到 b-Ga 2 O 3 | SiC 以及金属|金属热压键合。我们的主要目标是能够研究和设计界面以优化属性并最终优化设备性能。这些研究是 MURI 项目“利用新的理论范式增强宽带隙电力电子中的界面热传输”的一部分。
转介反应是高效的动态共价反应,可以通过将材料暴露于外部刺激(例如热量),从而在无需催化剂的情况下进行交换而无需催化剂。在这项工作中,合成了由香草蛋白丙烯酸酯和香草蛋白甲基丙烯酸酯官能化的Jeffamines®组成的五个生物基衍生的树脂制剂,并合成了使用数字光投影(DLP)打印的3D。产生的最终的热固体显示了一系列机械性能(Young的模量2.05 - 332 MPa),这些特性允许一系列应用。我们获得的材料具有自我修复能力,这些能力是通过刮擦愈合测试来表征的。此外,当使用热压下在高压下,在高压下的玻璃过渡温度上方进行热处理时,动态转移反应可以重新处理。由于简单的合成程序和随时可用的商业Jeffamines®,这些材料将有助于促进向具有主要生物含量的材料的转变,并有助于脱离由不可再生资源制成的聚合物。
本文报道了一种基于软辊冲压工艺的紫外固化聚合物微透镜阵列快速制造创新技术。在该方法中,通过在微透镜阵列的塑料母版中浇铸聚二甲基硅氧烷 (PDMS) 预聚物来制造具有微透镜阵列腔体的软辊。塑料母版采用气体辅助热压法在带有微孔阵列的硅模具上对聚碳酸酯 (PC) 薄膜进行聚碳酸酯 (PC) 薄膜压印来制备。软辊上的微透镜阵列腔首先用液态紫外固化聚合物填充。辊在移动的透明基板上滚动和冲压。形成微透镜阵列图案。同时,基板上的图案在穿过滚动区时被紫外光辐射固化。在本研究中,设计、建造和测试了具有紫外曝光能力的辊压设备。测量、分析了复制的微透镜阵列的复制质量、表面粗糙度和光学特性,结果令人满意。这项研究展示了软辊冲压在连续快速批量生产中的潜力。 2006 Elsevier BV 保留所有权利。
ThreeBond 的各向异性导电膏 (ACP) 是一种液体材料,由均匀分散在高绝缘性粘合剂成分中的导电颗粒组成。ACP 是一种功能性材料,通过丝网印刷工艺中的应用和干燥产生各向异性导电膜。它能够通过数十秒的热压工艺在物理连接处实现以下所有三个动作: (1) 在电子元件之间形成电连接; (2) 保持相邻电极之间的绝缘; (3) 粘合和固定。ThreeBond 在过去 30 年中一直致力于与 ACP 相关的研发,推出的产品在热封连接器、显示设备、手机背光、薄膜开关和触摸屏等市场上广受好评。在此期间,越来越先进的高功能电子元件的开发大大改变了人们对 ACP 的期望。除了高可靠性和功能性之外,市场现在还要求更高的可用性、更高的长期可存储性以及与环境标准的兼容性,例如无卤素*1 和无甲苯产品。本期讨论了我们的 ACP 与其他连接器材料的区别,并论证了 ACP 的优越性。它还介绍了为满足市场需求和环境要求而开发的产品(ThreeBond3373 系列)。*1:氯 < 900 ppm、溴 < 900 ppm、氯 + 溴 < 1,500 ppm 此后,ThreeBond 将缩写为“TB”。
ARENA - 澳大利亚可再生能源机构 AS - 澳大利亚标准 ASME - 美国机械工程师学会 ASTM - 澳大利亚材料与试验协会 BatMn - Calix 的电煅烧炉之一 BF - 高炉 BoD - 设计基础 BOF - 碱性氧气转炉 BoM - 物料清单 煅烧炉 - 发生目标反应的工艺容器。 CAPEX - 资本支出 CFC - 杯状闪速煅烧炉 CGA - 压缩气体协会 COD - 化学需氧量 DCS - 分布式控制系统 DM - 脱盐(水) DRI - 直接还原铁 EAF - 电弧炉 EIS - 环境影响报告 EPCM - 工程、采购和施工管理 EPL - 环境保护许可证 ESD - 紧急关闭 FAT - 工厂验收测试 FEED - 前端工程设计 FEL - 前端装载机 FID - 最终投资决策 FOAK - 首创 GA - 总体布置 Gt - 千兆吨 HA - 氢侵蚀 HAZOP - 危害和可操作性评审 HBI - 热压铁块 H-DRI - 直接氢还原铁 HE - 氢脆 HMI - 人机界面 I/O - 输入/输出 IEA - 国际能源署 IFC - 国际消防规范 ISA -国际自动化学会 IEC - 国际电工委员会 IECEx - 国际电工委员会爆炸性环境用设备标准认证体系 ktpa - 千吨/年
摘要:开发混合像素探测器需要可靠且具有成本效益的互连技术。互连技术需要适应各个应用程序的音高和模具大小。这项贡献介绍了基于各向异性导电胶粘剂(ACA)的新开发的内部单DIE互连过程的最新结果。ACA互连技术用嵌入在薄膜或糊状的环氧层中的导电微粒代替了焊料。使用Flip-Chip设备螺栓进行热压来实现传感器和ASIC之间的电力连接。ACA技术也可以用于ASIC-PCB/FPC集成,更换电线粘合或大型焊接技术。需要特定的像素垫拓扑来通过微粒启用连接,并创建过量环氧树脂可以流到的腔体。通过内部电气镍浸入金(ENIG)工艺实现此像素垫拓扑。ENIG和ACA过程具有各种不同的ASIC,传感器和专用的互连测试结构,垫直径范围为12℃至140°M,并且在20°M至1.3 mm之间的螺距。产生的组件是电的,带有放射性源曝光,并在具有高摩托颗粒梁的测试中。此贡献介绍了开发的互连和镀层过程,并用上述方法展示了产生和测试的不同混合组件。将重点放在板和互连过程的最新优化上,从而改善了电镀均匀性和互连产量。
基于可持续发展策略和实际应用要求,至关重要的是发展高强度,可回收和燃气 - 降压聚氨酯(PU)弹性体。因此,具有充分的硼烷酯键和含有磷的组的动态性弹药弹性(PU-DP 1-7),可重新加工,高性能的聚氨酯弹性体(PU-DP 1-7)。PU-DP 1 - 7的化学结构通过傅立叶变换红外光谱法(FTIR)和X射线光电子光谱(XPS)证实。pu-dp 1 - 7显示在900 nm的波长下的透射率约为60%,磷和硼元素均匀分布在其表面内,证实了统一的交联网络的形成。含磷和硼隆的组的包含PU-DP 1-7具有垂直燃烧(UL-94)V-0等级,表明所需的阻燃性。此外,PU-DP 1-7的拉伸强度为42.7 MPa,在休息时的伸长率为616.9%,由于其网络中的丰富氢键,对各种底物具有很高的粘附强度。此外,动态硼酸酯键endow pu-dp 1 - 7具有Su Perior物理回收和形状内存性能。在130℃进行热压后,改革后的PU-DP 1-7胶片显示出在休息时伸长率的恢复效率的83.6%。这项工作提出了一种综合策略,可以通过引入含磷的片段和动态的硼烯酯键来创建具有出色的机械和形状 - 内存性能,具有出色的机械和形状 - 内存性能的综合策略。
自 20 世纪 50 年代以来,全球已生产了 83 亿吨 (Bt) 原生塑料,其中约 5 Bt 已作为废物堆积在海洋和其他自然环境中,对整个生态系统构成严重威胁。显然,我们需要可持续的生物基替代品来替代传统的石油衍生塑料。迄今为止,由未加工的生物材料制成的生物塑料存在异质和非内聚性形态的问题,这导致其机械性能较弱且缺乏可加工性,阻碍了其工业化应用。本文介绍了一种快速、简单且可扩展的工艺,可将原始微藻转化为自粘合、可回收、可在家庭堆肥的生物塑料,其机械性能优于其他生物基塑料(如热塑性淀粉)。经过热压,数量众多且具有光合作用的藻类螺旋藻会形成具有黏性的生物塑料,其弯曲模量和强度分别在 3-5 GPa 和 25.5-57 MPa 范围内,具体取决于预处理条件和纳米填料的添加。这些生物塑料的可加工性以及自熄性使其成为消费塑料的有希望的候选材料。机械回收和土壤中的快速生物降解被证明是报废选项。最后,从全球变暖潜力的角度讨论了环境影响,强调了使用螺旋藻等碳负性原料制造塑料的好处。