此外,单独出版物中描述的其他产品涵盖:•烟气低的MV电缆,零卤素LSF-ZH到BS 7835。•柔性电线和电缆最多300毫米2至IEC 60227,BS 6004&BS 6500。•热固性绝缘电线类型XHHW-2,XHHW,XHH,RHW-2,RHW-2,RHW和RHH至UL44•建筑电线(NYA)至IEC 60227和BS 6004,从1.5 mm2及更高版本。•带有PVC和XLPE绝缘的LV电源电缆至IEC 60502-1,BS 5476,BS 7889和UL 1277。•MV电缆至IEC 60502-2,最高为18/30(36)kV和BS 6622至19/33(36)KV。•低烟和烟,零卤素建筑线(LSFZH)至BS 7211,具有替代电线类型(NYA)的Thermo设置绝缘材料,在该应用中,该应用需要更高的安全标准,以防止烟雾,烟雾和有毒气体排放。•带有LSFZH的LV电缆,在暴露于火灾下的热固性绝缘材料会产生烟雾,烟气和有毒气体和零卤素的低排放。电缆是根据BS 6724,IEC 60502-1生产的,并对IEC 61034,IEC 60754&IEC 60332进行了测试。•带有LSFZH至BS 7835的MV电缆。•高达IEC 60840的HV电缆,以及ANSI / ICEA S-108-720,导体尺寸高达1200 mmm2。未来的产品范围将扩展到高达480 kV的高电压电缆,并大于2000毫米2的导体横截面。
Vibrantz 是全球领先的特种化学品和材料供应商,其宗旨是为生活带来色彩、性能和活力。我们的产品和技术服务于超过 11,000 名客户,服务于广泛的应用领域,并融入无数消费品中。Vibrantz 在粒子工程、玻璃和陶瓷科学以及色彩技术方面拥有关键竞争力,在电池、电子元件和建筑的特种矿物和化学添加剂、油漆和涂料、热固性塑料和热塑性塑料的颜料和着色剂以及高性能玻璃涂料和瓷釉解决方案方面处于领先地位。
先进复合材料中心 (ACC) 将成为使用基于数据的方法和机器学习来开发复合材料制造方法的领导者,并解决诸如高效率、高成本效益的热固性塑料和热塑性塑料、减少航空航天业的环境足迹和培训未来劳动力等问题。利用工业伙伴关系,ACC 将把基础研究转化为实践,并将成功的技术反馈到教育和劳动力发展中。该中心将引领并成为新型节能轻质复合材料系统设计、制造、评估和认证的全国磁石。ACC 的成果包括:
最近,人们对热塑性复合材料的兴趣又重新燃起,这主要是由于自动化技术的进步,通过提高制造速度,可以大幅降低成本,同时减少与热固性复合材料制造相关的零件数量和能耗。与此同时,新的材料系统已经开发出来,热塑性复合材料预浸料的质量也随着时间的推移而提高。此外,热塑性复合材料的室温保质期几乎是无限的,生产废料可以重复使用,报废零件可以回收利用,为更可持续的运营和下游市场提供了机会。这些因素促使人们对航空航天、汽车和其他工业应用领域中热塑性复合材料的先进技术产生了浓厚的兴趣。
世界塑料产量自工业规模的生产开始于1940年代以来,并且可以有效地回收并重新使用,未分化的聚体或热固性聚合物,因此,大多数这些原材料最终会在吸收机中的土地上或能源回收。由于这些产物的高附加价值,废物聚体转化的碳纳米材料是一种替代的,有希望的方法。尤其是新型碳材料,可以转化为有趣且廉价的材料,用于催化氧(ORR),这是H 2 O 2的生产或燃料电池和金属空气电池的基本反应。
摘要 在过去的 10-20 年里,集成电路 (IC) 的发展发生了重大转变,传统的光刻方法在更先进节点的开发时间急剧增加,而要实现与以前相同的性能提升,成本也成倍增加。成本的增加和光刻技术的进步导致人们开始研究先进的封装技术,通过改变 IC 设计方法来实现相同的性能提升。未来先进封装技术将以更低的成本提高性能,人们将 IC 视为一个相互交织工作的组件系统,而不是单个组件。这种思维转变导致了系统级封装 (SiP)、堆叠封装 (PoP) 和扇出型晶圆级封装 (FOWLP) 等技术的出现。在实现上述技术方面发挥关键作用的一项先进封装技术是临时键合和脱键合 (TB/DB)。 TB/DB 在先进封装中发挥的关键作用在于,通过使用支撑载体晶圆,可以实现晶圆减薄、晶圆凸块、芯片堆叠和化学气相沉积/物理气相沉积 (CVD/PVD) 型工艺等背面处理。支撑载体晶圆还可以减少整个晶圆堆叠的整体翘曲,从而允许使用易翘曲的材料,例如环氧模塑料 (EMC),这在 FOWLP 应用中至关重要。要使用支撑载体晶圆,需要一种坚固的材料解决方案,以便将晶圆粘合在一起,然后在背面处理后通过热滑动、机械或激光脱粘等主要分离方法之一将其释放。Brewer Science 设计并开发了一种双层临时粘合系统。该系统由两种材料组成,一种是通常涂在设备上的热塑性层,另一种是通常涂在载体上的热固性层。为双层系统开发的材料在极高温度应用、EMC 晶圆处理和设备减薄至 20 µm 以下方面表现出色。在本文中,我们将总结它们的功能,并介绍如何通过材料设计来调整两个临时层之间的粘合力。我们还将介绍热固性层的一个新功能,该功能可以进行图案化,从而允许将图案化粘合材料用于 TB/DB 型应用。关键词临时晶圆粘合、双层系统、光图案化、热塑性材料和热固性材料
制造方法:聚合物基复合材料-热固性复合材料制造-铺层工艺、喷涂工艺、纤维铺放工艺、树脂传递模塑、真空辅助树脂传递模塑、压缩成型工艺、纤维缠绕。热塑性复合材料制造-片材成型、注塑成型、片材成型、压延、挤压、吹塑、旋转成型、热成型。金属基复合材料-固态方法-热等静压 (HIP)、箔扩散粘合。液态方法-搅拌铸造、挤压铸造、压力渗透;陶瓷基复合材料-烧结、CVD。第三单元复合材料设计和测试