抽象在中层和下热层中增加二氧化碳浓度正在增加辐射冷却,从而导致热圈收缩和固定高度下的中性质量密度降低。对历史中性密度趋势的先前研究表明,对太阳活性有依赖性,较大的F10.7值导致中性密度降低。为了研究对未来热层的影响,使用电离层和热层扩展的整个大气社区气候模型已用于模拟在增加二氧化碳浓度和变化的太阳能活动条件下的热层。这些中性密度降低已被映射到政府间气候变化委员会发表的共享社会经济途径上。中性密度降低也可以用作缩放因素,从而使常用的经验模型可以考虑CO 2趋势。在“最佳情况”下,SSP1-2.6场景下,与2000年相比,在400 km高度峰值(当CO 2 = 474 ppm时)的中性密度降低(当CO 2 = 474 ppm时)以13%–30%的降低(分别低于太阳能和低太阳能活动)。较高的CO 2浓度导致更大的密度降低,最大的建模浓度为890 ppm,在高太阳能活动下,在400 km时分别减少了50%–77%的浓度。
南大洋为全球海洋热量和碳吸收提供了主要的贡献,这被广泛解释为其独特的上升和循环。在这里,我们在这些贡献中显示出很大的不对称性,而在最先进的气候模型中,南方海洋占全球热量吸收的83±33%,而全球海洋碳吸收的43±3%。使用单个辐射强迫实验,我们证明了这种历史不对称是由于增强的气溶胶强迫抑制了北部海洋的热量吸收。在未来的预测中,例如SSP2-4.5,温室气体越来越主导辐射强迫,南大洋对全球热量和碳吸收的贡献分别更为可比性,分别为52±5%和47±4%。因此,过去不是未来的可靠指标,北部海洋对于热量吸收而变得重要,而南部海洋对于热量和碳吸收都至关重要。
2022年2月4日,由于预测的太空天气指数中的错误估计以及以下大气阻力的意外增加,SpaceX损失了其49个Starlink卫星中的40个。通过进一步调查该事件,发现地磁风暴只是次要风暴。尽管如此,两次连续的冠状质量弹出在2月3日至4日袭击了地球,与2月2日相比,热圈密度的平均增加约为20%,局部峰值高达60%。这一事件以及我们正在预期太阳能活动时正在接近第25太阳能周期的太阳能最大值,这表明需要准确的预测,建模和对太阳对热层密度的影响的理解(Dang等,2022)。实际上,大气阻力是低于1,000公里的空间对象的主要干扰力,也是最大的不确定性来源(Berger等,2020)。因此,其确切的估计对于
