这项工作的核心目标是将综合模型 GENeSYS-MOD 生成的不同欧洲脱碳情景的成本效益供热从国家级缩小到奥地利的社区级,从而揭示 2050 年区域供热的热密度。我们假设区域供热包括地热、合成气、氢气、废物和大型热泵作为可再生热源。结果确定了 2050 年奥地利 68 个社区的区域供热,占社区总数的 6%。我们发现 GENeSYS-MOD 结果能够涵盖区域供热的当地趋势,因为预计在当地层面的热密度中有很大一部分达到了表明经济可行性的值。应进一步研究如何将当地确定的区域供热和热密度以反馈回路的形式返回到更综合的模型(例如 GENeSYS-MOD)中。这允许在大型上层模型中细化假设,从而提高欧洲层面路径的合理性和现实性。 © 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、更轻、更低功耗 (SWaP) 外形尺寸以及可扩展的频率覆盖范围(从 1.5 MHz 到 3 GHz)。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显著提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来
目前,已经设计了多种储热技术,以匹配系统。1,2这些技术通常可分为三大类:显热储热、潜热储热和热化学储热。7-11但前两种技术更容易损失守恒的热能,因此不适合长期储热。12在这些技术中,热化学储热利用可逆化学反应释放和储存热量,由于其良好的储热密度,热能利用效率最高。13因此,可以研究大量材料用于广泛工作温度范围内的热化学储热。12-19Kubota等人9,20将多孔碳和吸湿材料与氢氧化锂(LiOH)制成低温储能材料,储热性能明显提高。这项研究证明
我国电力供应虽然相对稳定,但电力负荷峰谷电差较大,特别是近年来气候变化引起的用电高峰不断攀升,加剧了电力供需在空间和时间上的不平衡,给电网调峰、生活及工业用电带来严峻挑战[1]。建筑运行用电约占全社会用电的1/4,而热水器用电又占家庭总用电的20%~40%,每年热水器用电量达400~600亿kWh[2,3],参与电网调峰潜力巨大。相变储能材料具有较高的储能密度[4],可有效提高热水器效率,降低运行成本,缓解电力供需不匹配问题。对于四种相变材料——固-液相变材料、液-气相变材料、固-固相变材料和固-气相变材料而言,后三种相变材料的储热密度小、相变过程中体积变化大、压力高等缺点阻碍了这三种相变材料的应用
– (1) 垂直围护结构 (+15 o C 至 +30 o C); (2) 屋顶和阁楼 (+35 o C 至 +55 o C) – (3) 空间供暖 (+35 o C 至 +55 o C); (4) 制冷 (0 o C 冰,以及 +5 o C 至 +15 o C - PCM) – (5) 水加热 (+50 o C 至 +65 o C); (6) 废热回收 (+5 o C 至 +20 o C) – (7) 建筑一体化太阳能系统 (+35 o C 至 +70 o C) • 单个 PCM(即使可切换温度)可能无法很好地发挥作用,即使在可能进行不同放置(温度梯度较大)的单个应用中也是如此 • 更好的解决方案 – 针对每种用途和位置的温度精心调整 PCM • 添加剂、封装剂和包装材料不仅占用应用空间,降低整体储热密度,而且还会显著增加价格!
摘要。变形Jaynes – Cummings模型(JCM)在量子光学元件中具有物理重要性。因此,我们研究了非线性JCM,包括强度依赖性耦合常数和额外的KERR项。在温度t处,假定腔体在热平衡中,并具有热储存液。使用封闭的代数的发电机在限制情况下还原为SU(1,1)和Heisenberg – Weyl代数,并考虑总兴奋数为运动常数,Hilbert Space的总Hilbert Space分解为两个子空间。因此获得了特征值和相应的特征向量。我们得出了热密度矩阵,并使用消极措施分析了实现和热纠缠。此外,我们研究了非线性原子 - 场系统的浆果相,并探讨了非线性对量子相变(QPT)点和纠缠的影响。发现变形参数可以强烈影响实现,负性和QPT点。