鹰嘴豆(Cicer Arietinum L.)是一种重要的食物豆类,在约1484万公顷的面积上种植,其保育率约为1508万吨(Faostat,2020年)。它主要是在干旱和半干旱的热带地区生长的,并且由于诸如干旱,盐度和热量等非生物胁迫而产生的大量产量损失。日益增长的环境发展和干旱的复杂性质是限制鹰嘴豆产量的主要因素之一,通常导致60%至70%的年收益率损失(Barmukh,Roorkiwal,Garg,Garg等,2022; Hajjarpoor等人,2018年)。遗传上遗传性种质的遗传改善和发展是减少干旱胁迫作用的最可持续方法(Varshney,Barmukh等,2021)。在这个方向上,有望通过增强的干旱胁迫适应性来提供更好的农作物品种。
整个靶场的土壤和地形构造具有不同的特征和物理、化学和生物特性,”奥尔伯特说。“它们都可能以不同的方式与车辆和武器系统相互作用。”在对当前和未来军事装备进行开发测试时,最重要的问题之一是,它必须在 YPG 进行测试的所有三种极端自然环境中按预期运行:沙漠、寒冷地区和热带地区。“如果有一件装备要部署到士兵手中,通常会在三个测试中心进行测试,以确保它能够承受这些极端条件,因此我们需要非常了解我们的环境,”奥尔伯特说。奥尔伯特补充说,YPG 的未来计划要求使用带有特殊传感器的无人机检查某些地点的地形,以便客户尽可能多地了解
摘要 胡萝卜 ( Daucus carota ) 是一种重要的冷季根类蔬菜,在全球广泛种植和消费。其块根富含胡萝卜素、花青素、膳食纤维和维生素,还具有独特的风味和健康益处。传统和现代分子育种技术都为提高全球温带、亚热带和热带地区胡萝卜的产量和品质做出了贡献。在本文中,我们简要总结了现有的遗传资源、胡萝卜产量、品质和主要生物和非生物胁迫育种的进展、基因组资源和分子育种。我们还讨论了热带胡萝卜育种在改良重要性状(主要是 β-胡萝卜素、钝根形和无疤痕光滑根)方面面临的挑战和未来前景。 关键词 : 胡萝卜、胡萝卜、根、热带、育种、杂交、基因组学。
基于对动植物进行的数百种实验研究,生物多样性与生态系统功能之间存在良好的关系[1,2]。,这种关系对于微生物而言是复杂而难以捉摸的,鉴于物种数量的惊人以及我们对它们表达的功能性状的有限理解。识别新的微生物物种并获得对其生态作用的见解的挑战是令人兴奋和令人不安的。一方面,它使我们能够获得有关微生物多样性及其为我们星球提供的服务的真实程度的宝贵信息。另一方面,鉴于地球自然生态体的环境退化的状态以及气候变化引起的变化,它要求我们相当快地移动。这是热带地区特别关注的,因为它与任何其他生态系统的植物物种数量不高,并且估计估计> 40 000棵树特征的估计数量到2050年被威胁到全球范围内[4]。随着植物的消失,有
新年有更多的极端。1月初,维多利亚州中部部分地区的纪录破雨给农村社区带来了又一轮洪水。向北,季风的迟到到达了该国的热带地区,其中包括仍然从Cyclone Jasper湿透的地区。西澳大利亚州继续烘烤,皮尔巴拉(Pilbara)的温度记录损失,珀斯周围的房屋本赛季第三次受到大火的威胁。Kalgoorlie位于珀斯东北600公里处,在雷暴击倒电力基础设施后,留下了极端的温度。随着热量向东蔓延,遥远的Birdsville打破了昆士兰州有史以来最热门的一天的记录,并且在1月26日的公共假期中,包括在悉尼和布里斯班,在东海岸的数百万个艰难的湿度和较高的湿度意味着艰难的条件。
第1章:热带地区在哪里?Chapter 2: Biogeography and Evolution in the Tropics Chapter 3: Inside Tropical Rain Forests: Structure Chapter 4: Inside Tropical Rain Forests: Biodiversity Chapter 5: A Study in Biodiversity: Rain Forest Tree Species Richness Chapter 6: A Shifting Mosaic: Rain Forest Development and Dynamics Chapter 7: Biotic Interactions and Coevolution in Tropical Rain Forests Chapter 8: Trophic Dynamics in Evolutionary Context Chapter 9: Carbon Flux and热带生态系统中的气候变化第10章:营养循环和热带土壤第12章:其他热带生态系统:从山到河流到海洋第13章:作为热带生态系统的人类,作为热带生态系统的一部分:关注新型的新型章节14:Neotropics第14章:森林碎片和生物多样性片段和生物多样性的范围:
问题:由土壤传播真菌fusari-um oxysporum f引起的香蕉巴拿马疾病(或镰刀菌)的毁灭性疾病。 sp。cubense(foc),具有破坏香蕉生产的悠久历史。在1962年左右,发现Cavendish品种可以抵抗镰刀菌的菌株,并在出口市场中取代了Gros Michel(Ploetz,2015年)。然而,一种新的菌株,焦点热带种族4(focTR4)已成为对热带地区卡文迪什香蕉的重大威胁(Ghag等,2015)。在越南,FOC TR4于2017年首次报道,影响了北部省份的Cavendish香蕉(Hung等,2018)。现在,它已成为越南香蕉上最危险的疾病(图1.A)。这已经提出了有关该国香蕉生产的未来以及依赖这种农作物的农民的生产的情况。
芝麻(芝麻杂种L.)是广泛种植的最古老的油料种子农作物之一,在全球的热带地区生长,具有印度次大陆,作为其祖先的中心和祖先(Bedigian,2003年)。然而,非洲是芝麻之外的大多数芝麻野生亲戚的起源中心。在印地语,Nuvvulu(泰卢固语),Ellu(Tamil),Tal(Gujarathi),Zhima(中国),Goma(Japan),Chamkae(韩国)和Kun-Zhut(俄罗斯)(俄罗斯)中,它被称为TIL。古代印度文学记录了芝麻在宗教仪式中的常见用途,表明芝麻的培养年龄(超过5000年)(Pathak等,2014)。基于可用的种质,使用印度的表型数据开发了核心收集(CC)样品(I. S. Bisht等,1998)和中国(Xiurong等,2000)。
碳氢化合物相关燃料引起的环境污染物封存举措促使全世界开始寻找替代能源。大多数清洁能源的效率和可靠性取决于设计过程和可用性,而这又取决于模型和地点的地理位置。尼日利亚位于热带地区,地理位置优越,非常适合利用太阳能作为替代能源。不幸的是,尽管该地区有太阳能供应,但人口仍然依赖碳氢化合物相关燃料,这是由于家庭和街道上安装的光伏太阳能发电性能不佳。因此,有必要开发数学模型来帮助安装可靠的光伏太阳能发电系统。这些数学模型可以减轻人们在可靠光伏太阳能系统设计方面的无知程度。数学模型用于为假设负载系统设计光伏太阳能发电系统。结果表明,使用数学模型设计光伏太阳能发电系统,并假设当地地理环境条件,可以帮助安装可靠的电力系统。
周围的林地地区约为40亿公顷,约占地球到达的30%,但每年下降1300万公顷,这是“惊人的速度”。在南美,西非中部以及南亚和东南亚的热带地区,森林砍伐是最值得注意的。林地提供了生物系统管理,其中包含了在邻里,领土和全球范围内的气候和气候方向。以这种方式,森林砍伐并不是造成林地环境的协调不幸,但随着环境政府的衰落,造成了回旋的影响。众所周知,森林砍伐会辐射有助于全球气候改变的二氧化碳,但鲜为人知的是对气候设计的预期影响。本报告审核分布式的森林砍伐影响及其对园艺的潜在影响。到达覆盖物的改变会影响土壤,植被和空气之间的水和活力的贸易。这些变化可以改变空气循环和热力学,影响降水设计和表面温度(Foley等,2015)。