随着我们继续对建筑物和电力供应进行脱碳,推进带有热存储的电加热、冷却和热水系统以实现需求灵活性至关重要。同样重要的是,这些解决方案要简化改造并优先考虑可负担性,以确保公平的能源转型。在本文中,我们比较了使用带有热存储的热泵的各种策略;并讨论了它们独特的优点和缺点。我们更详细地探讨了一种系统类型——带有相变热存储的模块化“组合”空气到水热泵。“组合”热泵——又称“多功能”或“组合”热泵——使用单个热泵提供供暖、冷却和生活热水。我们记录了该系统安装的设计以进行试点评估,并通过建筑能量模拟以及成本和可行性评估彻底探索了它的好处。我们解释了这项技术如何解决当前热泵的许多痛点和局限性,尤其是在多户建筑中;我们阐明了这项技术如何更好地实现所有住宅终端用途的电气化和电网交互控制的愿景。通过这些调查,我们展示了与典型的热泵改造相比,该技术如何:1)降低所需的热泵容量,2)减少设备数量和占地面积,3)降低最大电力需求,4)减少电路数量,5)在高峰定价期间最大限度地减少消耗,6)避免补充热量的需要,7)减少制冷剂的使用,8)缩短分配管道,9)提高弹性,10)延长寒冷气候性能,11)降低温室气体排放,12)简化系统安装,13)整合行业以加快改造。
锂离子电池(LIB)的数学建模是高级电池管理中的主要挑战。本文提出了两个新框架,以将基于物理的模型与机器学习相结合,以实现LIBS的高精度建模。这些框架的特征是通过告知机器学习模型的物理模型信息,从而可以在物理学和机器学习之间进行深入整合。基于框架,通过将电化学模型和等效电路模型与前馈神经网络相结合,构建了一系列混合模型。混合模型在结构上相对简单,可以在广泛的C速率下提供相当大的电压预测精度,如广泛的模拟和实验所示。这项研究进一步扩展到进行老化感知的混合建模,从而设计了意识到健康的混合模型以进行预测。实验表明,该模型在整个LIB的周期寿命中具有高电压预测精度。
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
直接加热灭菌循环 – 140°C 下 120 分钟 – 确保消除每个培养箱表面的所有微生物和真菌孢子 (ANSI/AAMI/ISO 11134)。此声明已通过针对干热过程校准的枯草芽孢杆菌孢子悬浮液得到验证,因为这些孢子对干热灭菌具有最强的抵抗力,因此是推荐的指示生物(美国药典,第 1035 章)。在 140°C 下 120 分钟的灭菌循环后,施加到培养箱不同表面的所有孢子 – 腔壁(不锈钢)、门(玻璃)和门垫圈(钢化硅胶)都已可靠地消除。