总而言之,将顺式HBPA与异构体HBPA分离,并且将两个新型的单体HBPADA和Diamine F轻轻合成。通过两步热弹性化获得了一系列含有顺式-HBPA单元的聚酰亚胺。PI (1 6) exhibited T g and T 5% (in N 2 ) in range of 214 266 °C (DSC) and 386 407 °C respectively, and T S in the range of 85 122 MPa, indicating that the introduction of alicyclic cis -HBPA fragments did not deteriorate their thermal and mechanical properties compared with the aromatic PI 7.重要的是,所有聚酰亚胺膜在450 nm时的透射率高达86%,其良好的综合性能,尤其是出色的透明度和加工性,加上低介电常数,并且良好的机械性能使这些聚合物成为OptoElectronic设备式构造。
抽象 - 基于石墨烯的聚合物纳米复合材料吸引了广泛的工业兴趣,因为由于石墨烯的独特传导性能,该材料的电导率可以精确控制。在本文中,我们显示了去角质方法和分散时间对聚酰亚胺/石墨烯纳米复合材料的整体电导传导的影响。一组具有不同石墨烯纳米液含量的聚酰亚胺膜是通过热弹性制备的,并进行了电表征,以评估纳米复合材料对电渗透阈值的组成的影响。研究了三种分散技术(即高剪切混合,超声探针和行星混合)发现,在每种情况下,通过增加分散时间来减少石墨烯纳米叶片的尺寸。使用高剪切混合技术获得最高的分散质量,该技术产生了0.03 wt%的电渗透阈值。
火山。几项研究将这些现象与岩浆和水热流体联系起来。例如,在经过广泛研究的Campi Flegrei Caldera的情况下,最近的文献表明,热弹性弹性(TPE)包含模型适合描述经常伴随其无序发作的观察到的变形和地震性。最近的一些著作提出了分析解决方案,以建模薄盘形纳入的情况,即厚度比半径小得多。由于这种限制可能是关键的,随后将TPE包容性模型扩展到具有任意厚度的圆柱形夹杂物,通过将它们表示为几个薄二张圆形包含物(元素)的叠加。在本文中,我们演示了如何估计由圆柱形TPE夹杂物引起的位移和应力场的最小元素数量(厚度超过半径)。对于大于0.3的长宽比,单个元素模型将不再被证明适合以良好的精度表示位移和压力。
人类潜在的转化研究计划,Yong Loo Lin医学院(J.W.,X.R.T.,S.H.G.,M.I.,M.K.S.L.,J.G.E.,J.K.W.L. ),科学学院药学系(D.S.-Y.T),Yong Loo Lin医学院生理学系(J.K.W.L. ),热弹性和性能中心,Yong lin lin医学院(J.K.W.L. ),新加坡国立大学;新加坡技术学院的健康与社会科学,新加坡(X.R.T. );新加坡研究卓越和技术企业校园(S.H.G.,J.K.W.L. );新加坡南南技术大学的李孔钟医学院(M.K.S.L. ) );新加坡新加坡杜克大学杜克大学(M.K.S.L. ) );新加坡Tan Tock Seng医院内分泌科内分泌科(M.K.S.L. ) );新加坡科学,技术与研究机构新加坡临床科学研究所,新加坡(M.K.S.L.,J.G.E。 );芬兰赫尔辛基的福克哈尔森研究中心(J.G.E. );赫尔辛基大学和赫尔辛基大学医院,赫尔辛基大学赫尔辛基大学赫尔辛基大学赫尔辛基大学通用实践和初级保健系(J.G.E. );新加坡国立大学和新加坡国立大学卫生系统(J.G.E.)Yong Loo林医学院的妇产科和妇产系人类潜在的转化研究计划,Yong Loo Lin医学院(J.W.,X.R.T.,S.H.G.,M.I.,M.K.S.L.,J.G.E.,J.K.W.L.),科学学院药学系(D.S.-Y.T),Yong Loo Lin医学院生理学系(J.K.W.L.),热弹性和性能中心,Yong lin lin医学院(J.K.W.L.),新加坡国立大学;新加坡技术学院的健康与社会科学,新加坡(X.R.T.);新加坡研究卓越和技术企业校园(S.H.G.,J.K.W.L.);新加坡南南技术大学的李孔钟医学院(M.K.S.L.);新加坡新加坡杜克大学杜克大学(M.K.S.L.);新加坡Tan Tock Seng医院内分泌科内分泌科(M.K.S.L.);新加坡科学,技术与研究机构新加坡临床科学研究所,新加坡(M.K.S.L.,J.G.E。);芬兰赫尔辛基的福克哈尔森研究中心(J.G.E.);赫尔辛基大学和赫尔辛基大学医院,赫尔辛基大学赫尔辛基大学赫尔辛基大学赫尔辛基大学通用实践和初级保健系(J.G.E.);新加坡国立大学和新加坡国立大学卫生系统(J.G.E.)Yong Loo林医学院的妇产科和妇产系
摘要:几种高级电解质(主要是基于乙醚的)在高能密度锂金属电池中表现出了有希望的电化学性能。这项工作评估了其在滥用条件下的热稳定性,以阐明其安全限制与通常在锂离子电池中使用的碳酸盐电解质相比。与LINI 0.8 MN 0.1 CO 0.1 O 2阴极和超高电压(≤4.8V)和温度(≤300°C)的LI-Metal阳极一起评估电解质稳定性。通过等温微量钙化和差异扫描量热法监测热量释放的发作和程度。大多数基于醚的电解质显示出对碳酸盐电解质的热弹性提高。虽然极端电压严重破坏了基于以太的电解质的稳定,但基于磷酸盐的局部高浓度电解质在碳酸盐电解质上表现出改善的稳定性,即使在60°C下,在第一个电荷过程中的热分析也可能不足以使稳定的稳定性稳定地识别出较长期的电解质,但这些电解质的长期稳定性不足,但这些均可及时的稳定性。电解质设计。t
抽象的结构性马氏体变换实现了各种应用,从高冲程致动,感应到能源有效的磁性制冷和热蛋白网络能量收集。所有这些新兴应用程序都受益于快速转换,但是直到现在尚未探索其速度限制。在这里,我们证明了热弹性马氏体对奥斯丁岩转化的转化可以在10 ns之内完成。我们使用纳米秒激光脉冲加热外延Ni -Mn -GA膜,并使用同步加速器衍射来探测初始温度和过热对转化速率和比率的影响。我们证明,热能的增加可以更快地驱动这种转换。尽管观察到的速度极限为2.5×10 27(JS)1个单位单元格留出足够的空间以进一步加速应用,但我们的分析表明,实际极限将是切换所需的能量。因此,马氏菌的转化遵守与微电子相似的速度限制,如玛格鲁斯 - 左旋蛋白定理所表达的。
摘要:研究了四种加热强度(热弹性蛋黄,嘿;煮熟的蛋黄,sey;正常煮的蛋黄,ney;和煮沸的蛋黄,oey,oey,oey)对煮蛋黄的脂质分子的影响。结果表明,除胆汁酸,溶物磷脂酰肌醇和溶物磷脂酰胆碱外,四个加热强度对脂质和脂质类别的总丰度没有显着影响。然而,在量化的所有767个脂质中,在四个加热强度下,在蛋黄样品中筛选了190个脂质的差分丰度。沸腾和沸腾的人通过热变性改变了脂蛋白的组装结构,并影响了脂质和载脂蛋白的结合,从而增加了低到中等甘油酸的甘油三酸酯。在Hey and Sey中,磷脂降低,溶血磷脂和游离脂肪酸增加表明,在相对低强度的加热下,潜在的磷脂水解潜在水解。结果为加热对蛋黄脂质纤维的影响提供了新的见解,并将支持公众选择蛋黄的烹饪方法。
我们提出了一种自适应物理学的深层均质化神经网络(DHN)方法,以制定具有不同微结构的弹性和热弹性周期性阵列的全场微力学模型。通过完全连接的多层连接的单位细胞溶液通过最大程度地限制根据应力平衡和热传导部分微分方程(PDE)的残差之和,以及无界面的无牵引力或绝热边界条件。相比,通过引入具有正弦函数的网络层直接满足周期性边界条件。完全可训练的权重施加在所有搭配点上,这些搭配点与网络权重同时训练。因此,网络会在损耗函数中自动为界面附近(尤其是单位细胞解决方案的具有挑战性的区域)中的搭配点分配更高的权重。这迫使神经网络在这些特定点上提高其性能。针对有限元素和弹性解决方案的自适应DHN的精度分别用于椭圆形和圆柱孔/纤维的弹性解决方案。自适应DHN比原始DHN技术的优点是通过考虑局部不规则的多孔架构来证明合理的,孔隙 - 孔相互作用使训练网络特别缓慢且难以优化。
当前最新的超导量子盘冷却至极低的脾气,以避免反应的来源。较高的量子工作温度将显着提高可用的冷却能力,这对于扩大量子计算体系结构中的量子数量和在需要增加散热量的实验中的量子量。要在较高温度下操作超导Qubits,有必要解决两粒子的脱碳(对于高于160 mk以上的铝连接处而言变得很重要),并从热微波光子(高于50 mk的问题)中进行脱落。使用低损失尼伯三利叶连接,由于尼伯群的高导体过渡温度较高,它们对准粒子的敏感性降低了,我们制造的频率高于先前研究的频率,最高为24 GHz。我们测量了约1 µ s的去碳和去化性时间,对应于大约10 5的平均Qubit质量因子,并发现不受1 k的准粒子的影响,不放松的准粒子不受欢迎,我们能够从纯粹的热源中探索,发现我们的Qubits可以探索大约250米,从而可以探索纯粹的热源,从而探索了距离。这些量子位的热弹性创建了用于扩展量子处理器的新选项,启用具有高热量耗散预算的混合量子实验,并引入了一个材料平台,以供更高频率乘坐。
Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。 他已经从事代理模型工作了近三十年。 他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。 下一步在2009年遇到了代孕,他参与了网状运动项目。 径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。 最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。 特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。 目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。 Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。 目前,他还被任命为EBIT教师工程学院主席。 Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。他已经从事代理模型工作了近三十年。他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。下一步在2009年遇到了代孕,他参与了网状运动项目。径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。目前,他还被任命为EBIT教师工程学院主席。Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Kok教授完成了他的B.Eng。和M.Eng。Kok教授的专业旅程跨越了学术界和应用研究。Kok教授的专业旅程跨越了学术界和应用研究。比勒陀利亚大学的学位,然后是博士学位。在伊利诺伊大学Urbana-Champaign大学,得到包括富布赖特奖在内的著名奖学金的支持。从2003年到2009年,他在2009年至2013年的科学与工业研究委员会(CSIR)工作,并于2013年返回比勒陀利亚大学。自返回UP以来,他的研究集中在计算固体力学和材料建模上,这是有限元分析和材料参数识别等领域的。他的贡献也扩展到了专业服务,包括在南非理论和应用机械师协会(SAAM)中的领导角色。他是Saam的前任总裁,连续三年任职(2010-2016)。