F. Tang,Mojdeh Lahoori,H。Nowamooz,S。Rosin-Paumier,F。Masrouri。对土壤压实和热量储存对水平接地热交换器热性能的影响的数值研究。可再生能源,2021,172,pp.740-752。10.1016/j.renene.2021.03.025。hal-04522314
将纳米颗粒添加到涂料中是一种广泛采用的策略,可增强树脂性能而不会损害性能。铜氧化物被用作制剂中的添加剂,以取代有机金属,这是由于其杀菌性和防污活性而被禁止的。这项研究的重点是通过在抗小bial涂层中施用的铜(II)氧化物纳米颗粒的合成。合成过程涉及使用硫酸铜(CUSO 4 .5H 2 O)作为前体和NaOH作为碱性剂的共沉淀。的表征。这些分析证实了平均长度约为73 nm和宽度16 nm的CuO纳米棒的形成。对大肠杆菌,金黄色葡萄球菌,铜绿假单胞菌和蜡状芽孢杆菌进行了抗菌测试。结果表明,值得注意的抗菌活性,特别是对金黄色葡萄球菌和蜡状芽孢杆菌的抗菌活性。因此,研究结果表明铜(II)氧化物纳米颗粒具有作为添加剂的潜力,增强了树脂作为涂层和其他应用的杀菌性能。
摘要。数据保护现在是组织的重中之重,尤其是随着信息系统的发展以及现代技术带来的挑战。远程访问已成为业务连续性至关重要的,但也引入了重大的安全风险。为了解决这些问题,在数据安全的骨干上创新的创新至关重要。本文档介绍了受火星卫星启发的Phobos和Deimos加密方法。通过使用phobos和deimos的唯一轨道特性,该方法创建了动态加密算法。该方法涉及将字母分为组,并根据Deimos的位置应用转移技术,从而通过增加的复杂性来增强数据安全性。Phobos和Deimos加密方法旨在为维护敏感信息提供坚固的解决方案,以确保当今数字景观中的机密性,完整性和真实性。
文献综述摘要简介:热性惊厥危象是由于中枢神经系统尚未成熟,在6个月至5岁儿童中出现体温突然升高而发生的癫痫。目的:本研究包括文献综述,旨在确定和综合有关儿童热性惊厥的机制及其与感染的关系的现有证据。方法:研究于 2024 年 12 月进行,基于对 SciELo、BVS 和 PubMed 数据库中科学文献的综合审查。结果与讨论:CF 的病理生理涉及遗传因素和中枢神经系统 (CNS) 的不成熟,这使得儿童更容易受到发热刺激。温度升高会损害中枢神经系统的电传导,引发抽搐性癫痫。结论:了解病理生理机制,包括中枢神经系统的不成熟和遗传因素的影响,对于识别风险因素和进行适当的临床管理至关重要。
它达到稳定性。在514.5 nm激光率下进行石墨烯的光学和热力学性能。结果表明石墨烯具有出色的光疗特性。在低能和中能区域中石墨烯的吸收相当显着,并且其在紫外线区域中的强吸收可以应用于紫外线过滤器和光伏设备。在高温下,石墨烯的高温度及其稳定性在热管理材料和高温应用中具有巨大的应用潜力,扩大了石墨烯在光学组件和治疗管理材料中的应用,并为实验提供了更多理论支持。
本文详细介绍了为无人机设计的11 kW巡航电机的重量减轻过程,遵循三阶段的方法。该研究靶向现有的6相,28杆/24个插槽电动机,其主要目标是减少重量,同时最大程度地减少性能降解。堆栈长度和电动机直径被选为关键变量。彻底分析了运动几何形状对重量,电磁特性和热特性的影响。此外,转子轭厚度和永久磁铁厚度被认为是最终确定电动机配置的进一步设计变量。堆叠长度为40毫米,电动机直径为166毫米,转子轭厚度为3.4毫米,持久性磁铁厚度为2.8 mm,然后进行实验验证。 关键字:无人机(无人机),外转子PMSM,重量最小化,温度,堆叠长度,电动机外径堆叠长度为40毫米,电动机直径为166毫米,转子轭厚度为3.4毫米,持久性磁铁厚度为2.8 mm,然后进行实验验证。关键字:无人机(无人机),外转子PMSM,重量最小化,温度,堆叠长度,电动机外径
量子绝热定理是时间相关量子系统的基础,但能够定量表征多体系统中的绝热演化却是一项挑战。这项工作表明,使用适当的状态和粒子密度度量是一种可行的方法,可以定量确定量子多体系统动态中的绝热程度。该方法还适用于有限温度下的系统,这对于量子技术和量子热力学相关协议非常重要。通过与将量子绝热标准扩展到有限温度所获得的结果进行比较,讨论了考虑记忆效应的重要性:结果表明,这可能会产生构造上为准马尔可夫的错误读数。由于所提出的方法可以通过仅跟踪系统局部粒子密度来表征绝热演化的程度,因此它可能适用于非常大的多体系统的理论计算和实验。
摘要:本研究使用人工神经网络 (ANN) 预测模型对钛铝化物 (TiAl) 在一系列温度范围内的热行为进行了全面分析。该研究调查了 TiAl 在不同温度点的各种材料特性,包括带隙、杨氏模量、密度、能量吸收、热导率和比热。ANN 模型准确地捕捉了 TiAl 材料特性随温度变化的趋势,并显示出随温度变化而变化的一致行为。这些发现为了解 TiAl 的热特性提供了宝贵的见解,并对其在制药、汽车和制造等行业的实际应用具有重要意义。这些见解可以指导更高效、更耐用的 TiAl 基材料和组件的开发,增强它们在各个行业苛刻的热条件下的实际应用,从而促进制药设备的进步,因为温度控制对于药物合成和灭菌、发动机部件、汽车排气系统和高温制造设备等工艺至关重要。关键词:ANN、钛、铝、材料特性预测、温度分析简介
摘要。城市地区的运输正在通过各种车辆进行转变,而电子驾驶员的增长最快。尽管他们很受欢迎,但电子示威者仍面临不兼容的充电器等问题,尤其是租赁服务问题。无线充电是通过无需用户干预的电池充电而作为解决方案的。本文重点介绍了针对电子弹药机的磁性充电器的设计和开发。这项研究详细介绍了恒定电流恒定电压(CC-CV)电荷的线圈拓扑,间隙定义和优化控制。目前的关键贡献是对这些因素的综合考虑以及车辆的材料和结构,以精确设计和实施。车辆的尺寸显着限制了线圈设计。因此,在过去,使用ANSYS MAXWELL进行了详细的分析,以确定实际电子弹药机中主要和次要线圈的最佳位置。此分析导致了线圈几何形状的最佳设计,从而最大程度地减少了成本。拟议的系统已通过真实的原型进行了验证,并结合了CC-CV控制,以确保为各种电池状态提供安全充电,并适用于广泛的E型驾驶员,从而增强了此类充电器在公共装置中的可用性。
融合沉积建模(FDM),这是一种利用聚合物材料的普遍添加剂制造技术,可促进复杂的几何定制和快速原型制作。FDM Technol Ogy的持续发展强调了FDM打印的聚合物材料的热特性的重要性,这对于包括航空航天和生物医学工程在内的各种应用至关重要。在本综述中检查了FDM打印的聚合物材料的热性能,涵盖了广泛的热塑性聚合物和复合材料。尽管FDM技术具有多功能性,但热挑战仍在3D打印的零件中持续存在,表现为各向异性,空隙和亚最佳电导率,从而阻碍了性能。实现对打印参数(例如喷嘴温度,层高和速度)的精确控制是优化热能性能的关键。此外,受控的热处理(例如退火)提供了操纵印刷组件的结晶结构以增强导热率的途径。通过阐明增援的效果,本文旨在洞悉潜在的增强和调整,以开发基于FDM的热抗性聚合物材料。