本研究介绍了配备直接太阳能(DSF)的房间的案例研究,以预测真正的热和能量行为。dsf操作是由热惯性的,这是一种复杂的现象,其相对影响被证明受到许多因素的影响,包括太阳辐射和板的热绝缘材料。但是,当前的物理模型并不能很好地显示这种关系。本文将通过采用切换线性模型来证明这种关系可以用数值模型正式描述。实际上,文献中开发的仿真模型以非常简单的方法表示,不能用于对DSF的热作战的详细分析。本研究旨在减少知识差距并解决限制,例如(i)对直接太阳能地板的热行为的现实解释,(ii)以快速而简单的方式通过热惯性来确定热量惯性的加热模式,并且(iii)通过热惯性估算热量消耗的热量延期,可以延迟估计能量的能量。开关模型已检测到直接太阳能地板的三种操作模式,其中一个对应于热惯性加热时刻。该模型还可以评估热惯性的持续时间和能量。因此,在1110小时的测试期内估计为310小时和18.6kWh,平均每天3.58小时。
在陆地遥感中,热惯性很少被使用,因为它的计算涉及注册反照率、昼夜 TIR 和 DEM 图像,并且其值对植被、瞬时云量和风敏感。我们探索了一种技术,其中 ∆ T/ ∆ t ≈ dT/dt(温度变化率)被测量并用于估计热惯性。dT/dt 与昼夜温差成正比,因此与 P 成正比。它可以在短时间间隔内进行测量,从而减少云量、风或降雨干扰实验的机会。它的最大值/最小值在早上或下午,而不是传统方法的中午/午夜。这些特点有助于更好的实验设计。然而,在差分方法中,∆ T 比昼夜方法小得多(~20ºK),因此 ∆ T/∆ t 对测量精度(NE ∆ T)更敏感。因此,NE ∆ T 是恢复 P 能力的更重要限制。本质上,∆ t 必须足够大,使得 ∆ T » NE ∆ T。对于 MASTER 等传感器,NE ∆ T ≈ 0.3 K,并且对于信噪比为 10 或更大的常见表面 ∆ t > 60 分钟。虽然如此低的 SNR 在照片解释中可能是可以接受的,但它降低了 P 定量分析的可靠性;然而,进一步增加 ∆ t 既降低了差分方法的实用优势,也降低了估计 dT/dt 的能力。在本研究中,我们使用 FLIR Systems ThermaCAM S45 TIR 摄像机来评估加利福尼亚州莫哈维沙漠的盐沼(苏打湖)及其周边地区的差异热惯性与昼夜算法的关系。