载流子的迁移率受散射机制影响。散射机制有两种类型——声子和杂质 [A] 电子在固体中的完美周期势中自由移动,不受干扰。• 但热振动会破坏势函数,导致电子或空穴与振动晶格原子之间的相互作用。• 这会影响载流子的速度和迁移率,这称为声子散射。[B] 在半导体中添加杂质原子以控制或改变其特性。• 这些杂质在室温下被电离,因此电子或空穴与电离杂质之间存在库仑相互作用。• 这种库仑相互作用产生散射或碰撞,也会改变电荷载流子的速度:- 杂质散射。
摘要:准确从理论角度描述硼二吡咯亚甲基 (BODIPY) 分子的电子结构一直是一个难题,更不用说预测荧光量子效率了。在本文中,我们表明,可以通过自旋翻转时间相关密度泛函理论和 B3LYP 函数准确地评估 BODIPY 的电子结构。利用得到的电子结构,我们之前开发的热振动关联函数方法成功再现了代表性 BODIPY 的实验谱线形状。最重要的是,提出了一种双通道方案来描述 BODIPY 中 S 1 到 S 0 的内部转换:通道 I 通过在谐波区域内的直接振动弛豫实现,通道 II 则通过远离谐波区域的扭曲的 S 0 /S 1 最小能量交叉点实现。该双通道方案可以准确预测荧光量子产率,因此可以作为预测有机荧光化合物光物理参数的通用方法。
背景在一个寒冷的冬天的早晨,我们去厨房,放水壶,不久之后我们就可以享受舒适的热饮。这个奇迹是由于电导体中的基本过程之一:电子 - phonon相互作用。声子是原子的热振动。携带电流的电子会干扰原子核,它们开始变得更加活力,结果是我们所知道的焦点加热。现在可以想象这种现象在自然界中最细的电线中:单个原子的链。这些系统在大约30年的实验上使用技术 - 扫描隧道显微镜之一 - 赢得了诺贝尔奖。从理论上讲,这是一个可怕的困难问题。为什么?因为电子是严格的量子颗粒,而能量交换的一致理论也需要机械地对量子进行处理,同时考虑两者之间的相互作用。这将其变成了量子多体问题,这些是凝结物理学中最困难的问题。
费米级,非常同意实验。35,36个进一步的研究表明,管重建也可以改变PNR的热振动和热传输。38 - 42因此,ZZ [管]当然可以显着改变PNR的性质,并应进一步探索基于管缘的拟议应用。第二个重要因素是纳米丝的性质由于量子构成效应而随宽度而变化。例如,扶手椅石墨烯纳米骨的带隙遵循3p + 2规则。27,43 MOS 2纳米骨44和扶手椅H- Bn纳米骨45也表现出振荡带隙,带有带有色带宽度的变化。此外,Semductucting石墨烯纳米纤维的带隙46单调降低,并增加了色带宽度。除了边缘状态和宽度外,应变工程也是调整纳米骨的特性的一种有效方法。41,47扶手椅MOS 2的带隙(参考48)和曲折的H-BN 49纳米邦
点缺陷:(零维缺陷)是由于原子在结晶过程中偏离正常位置、存在杂质原子或原子处于错误位置而产生的。这些缺陷很小,其影响范围向所有方向扩展,但仅限于小有序(两个或三个原子级)的特定区域。空位:原子从其原始晶格位置缺失。通常由于结晶过程中的热振动而产生,并受外部参数的影响。空位可能是单个、两个或更多个,具体取决于晶体类型。对于大多数晶体,为了产生一个空位,需要 1.1 eV 的热能。间隙:当相同或不同类型的原子占据规则原子位置之间的空隙时,就会出现这种缺陷。杂质原子:不属于母晶格(原始晶体)的原子。取代缺陷:当杂质原子取代或替代母原子时,就会出现这种缺陷。例如:黄铜中的锌是铜晶格中的替代原子 间隙杂质:当尺寸较小的杂质原子位于常规原子位置之间时,就会产生这种缺陷。例如:当将五价和三价杂质添加到纯 Si 或 Ge 中时,我们会得到 n 型和 P 型半导体。
2SE 开始对 ABS 进行正式的资格测试。经 SHOT 批准的资格测试计划记录了 ABS 将在极端高温下进行测试,完成后将移至振动室进行严格的振动测试。尽管顺序测试是标准做法,但 2SE 新晋博士材料科学家 Fernando 认为标准测试协议可能无法完全代表飞机在实际飞行中可能面临的温度和振动综合环境。Fernando 决定对 ABS 进行临时且未拨款的热振动综合分析。Fernando 的分析发现了综合环境中的潜在风险。他推测 GAMCO 的先进材料用于 ABS 存在危险。Fernando 迅速将这一风险告知了总工程师 Vincent。Vincent 对 Fernando 的发现感到惊讶,因为 2SE 环境测试团队最近成功完成了热测试,然后又成功完成了振动测试。尽管费尔南多的分析超出了合同范围,但文森特还是启动了根本原因和纠正措施 (RCCA) 调查,以确定团队为何发现环境资质测试与费尔南多的综合分析结果存在差异。