AMETEK PDT 长期参与美国太空计划,与 NASA 合作为三次火星机器人任务和国际空间站上的两个实验平台提供系统和组件。在为 Sojourner、Spirit、Opportunity 和 Curiosity 火星计划提供集成泵送装置后,PDT 开始了其迄今为止最大的任务:在为期两年的火星探索任务中保持火星毅力号探测器的热控制。
低地球轨道被动热涂层观测站 (PATCOOL) 立方体卫星是由 NASA 资助的在轨实验,由佛罗里达大学先进自主多航天器实验室开发和领导。立方体卫星任务旨在研究使用一种名为“Solar White”的低温选择性表面涂层的可行性,以此实现深空部件的更高效的被动冷却。在地面实验中,这项新技术已经证明它比任何现有的热涂层或涂料都能提供更高的太阳辐射反射率,而 PATCOOL 立方体卫星将验证这项技术。PATCOOL 的热设计是任务成功的最重要方面。PATCOOL 有效载荷包含一个可容纳四个样品的外壳,其中两个样品涂有“Solar White”,另外两个样品涂有最先进的白色热控制涂层:AZ-93。本文讨论了使用行业标准热建模软件 Thermal Desktop® 构建热模型的过程以及 PATCOOL CubeSat 的热分析结果。热分析旨在研究 PATCOOL 有效载荷的稳态温度响应并确定热流源。内部和外部热模型的 PATCOOL 热分析结果表明,低温选择性表面涂层的性能远高于目前最先进的热涂料,从而验证了 PATCOOL 热控制设计的有效性。
当Cubesat项目是一种有用的手段时,大学可以通过它使学生参与与太空相关的活动。Turksat-3USAT是由太空系统设计和测试实验室以及伊斯坦布尔技术大学(ITU)共同开发的三单元业余无线电立方体,与A.S. Turksat合作开发。公司以及土耳其业余技术组织。它于2013年4月26日推出,是CZ-2D火箭的次要有效载荷,从中国的柔奎航天中心到约680公里的高度。卫星的任务有两个主要目标:(1)在低地球轨道(LEO)和(2)语音交流中,通过提供动手经验来教育学生。turksat-3usat旨在维持圆形的,靠近太阳同步狮子座,尺寸为10 x 10 x 34 cm 3。在本文的过程中,将解决Turksat-3usat的热控制。turksat-3usat的热控制模型是使用Thermxl和Esatan-TMS软件开发的。使用此模型,计算出遵守各种实验条件的各种情况的温度分布。使用热真空室(TVAC),在飞行模型上进行热循环和烘焙测试,以验证热设计性能并检查数学模型。基于热分析结果,设备温度在允许的温度范围内,除了电池在42.56 O C和-20.31 O C. C.电池中使用的电池加热器以维持电池的温度在允许的温度范围内。
印度空间研究组织 (ISRO) 的空间应用中心 (SAC) 已开发出用于空间硬件的电镀工艺,以实现所需的表面工程特性,如 EMI/EMC、电导率、非导电性、防腐、可焊性、发射率,并为热控制涂层奠定良好的基础。这些工艺符合太空使用要求,公差非常严格,并经过各种测试,如目视检查、附着力测试、环境测试和符合 ASTM 和 MIL 标准的工程特性特定测试。
ISRO的空间应用中心(SAC)开发了用于空间硬件的电镀工艺,以实现所需的表面工程特性,例如EMI/EMC,电导率,非电导率,腐蚀性,腐蚀性,焊接性,发射性,并为热控制涂层提供良好的基础。这些过程有资格用于太空使用,并进行非常紧密的公差,并经过各种测试,例如视觉检查,粘附测试,环境测试以及符合ASTM和MIL标准的特定于工程属性测试。
利用我们强劲的财务和运营势头,我们现在将简化集团,专注于高性能工业技术,以实现高效的流量和热量管理。这些技术由我们世界一流的 John Crane 和 Flex-Tek 业务提供,它们服务于有吸引力的能源和工业终端市场,并将实现持续增长和利润扩张。集团对这两个强大平台提供的未来价值创造潜力感到兴奋,包括追求工艺热控制等共享机会。我们将在 3 月份的中期业绩中提供有关集团未来战略重点的最新信息。
目前,移动性细分市场正在将与案例(互联汽车,自动驾驶/自动驾驶,共享和电动)技术相关的技术需求定位,尤其是与电动汽车开发相关的技术,作为商机。作为一种增长策略,该细分市场正在利用Resonac的减轻体重,电气化和热控制技术来发展业务并实现增长。另一方面,对于内燃机车辆的业务,其市场有望缩小,我们将通过优化生产能力并实施固定成本措施来建立强大的收入基础。通过这种方式,我们旨在实现EBITDA利润率20%或以上的目标。
人工智能测速 [1] 是 2017 年提出的一项技术,其中神经网络用于根据(最初为 2D)观测活动的稀疏和噪声测量重建某些流场。后来,它被改编为使用基于物理的神经网络 [2,3],并被提议用于改进阿尔茨海默氏症和小血管疾病的研究。然而,该技术似乎普遍适用于逆问题,其中稀疏观测值可在由一组偏微分方程控制的连续场上获得。卫星燃料晃动、太空推进、卫星热控制等情况似乎都为将类似技术应用于太空研究提供了良好的候选方案。