由于其高热传递性能,在砂面糊中使用的原始流体是水。使用水的主要问题之一是,它在蒸发之前只能达到100°C的温度,这会限制水的温度,将其限制在接近80°C的情况下,以阻止任何超级加热和管道损坏。可以考虑一些流体替代的选择,例如制冷剂A234,抗冷冻,冷却液,油和空气。这些流体能够承受各种温度,从而导致不同的传热读数。可以将发现的传热读数与电池中使用的原始流体进行比较。由于上学期未完全构建的预先存在的模型,进行了流体流量和温度变化的模拟。因此,通过固体工作的帮助测试了对传热速率的各种流体的模拟。
但是,这种细节的水平是以增加计算资源和仿真时间为代价的。最简化的几何形状是最短的计算时间。同时,准确性也有所不同。目标是找到一个简化的3D几何模型,该模型在准确性和计算效率之间达到平衡,从而可以更快地模拟,同时仍捕获重要的热电池效应。为了评估和比较这些模型,分析并在不同的仿真方法中分析并比较了关键性能指标,例如温度分布,电流分布和细胞电压。
摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
本研究的目的是现场检测使用激光粉末床熔合 (LPBF) 增材制造工艺制造的金属部件中的缺陷形成情况。这是一个重要的研究领域,因为尽管节省了大量成本和时间,但航空航天和生物医学等精密驱动型行业仍不愿使用 LPBF 制造安全关键部件,因为该工艺容易产生缺陷。LPBF 和增材制造中的另一个新兴问题与网络安全有关——恶意行为者可能会篡改工艺或在部件内部植入缺陷以损害其性能。因此,本研究的目标是开发和应用一种物理和数据集成策略,用于在线监控和检测 LPBF 部件中的缺陷形成情况。实现此目标的方法是基于将现场熔池温度测量(孪生)与基于图论的热模拟模型相结合,该模型可以快速预测部件中的温度分布(热历史)。该方法的创新之处在于,通过现场熔池温度测量逐层更新计算热模型提供的温度分布预测。这种数字孪生方法用于检测使用商用 LPBF 系统制造的不锈钢 (316L) 叶轮形部件中的缺陷形成。生产了四个这样的叶轮,模拟了 LPBF 部件中缺陷形成的三种途径,即:加工参数的变化(工艺漂移);机器相关故障(镜片脱层)以及故意篡改工艺以在部件内部植入缺陷(网络入侵)。使用 X 射线计算的
