温度和混合 在活塞发动机中,只有一小部分燃烧能量会在动力冲程期间产生活塞运动。大部分能量以热气体形式进入排气管。通过监测这些废气的温度,您将了解燃烧过程的质量。低压缩、燃料分布不均匀、点火故障和喷油器堵塞会降低产生动力的燃烧过程的效率。您可以通过称为倾斜的过程从驾驶舱调整燃料/空气比。延迟混合控制会改变燃料/空气比,从而影响废气温度 (EGT)。
要达到所需的结果,AFP过程需要将热量均匀,始终如一地传递到工件上。在航空航天行业使用的传统方法已有30多年的历史,使用热灯和热气作为热源。虽然该行业已经学会了如何使用这些方法,但它们在制造停机时间,冗长的设置过程,效率低下的能源使用和有限的灵活性以及因此较低的吞吐量方面具有固有的缺点。不太常见但越来越流行的方法利用二极管激光作为热源(图1)。
另一项重要发明是火药。火药的起源不明。然而,根据经文,历史学家认为中国人在仪式中使用硝石、硫磺和木炭的混合物。点燃这些混合物时会产生火花和明亮的烟雾。竹管中装满这种黑色混合物,两端密封。然后将竹管扔进火焰中。竹管会爆炸,发出明亮的闪光和巨大的噪音,这是他们仪式的一部分。有时,其中一个密封端会破裂,而不是爆炸,热气体会从开口端逸出,从而将竹管送入天空。观察到这种现象后,中国人将这些竹管绑在箭上,并在公元 1232 年的开坑之战中用来对抗蒙古人。火箭就这样诞生了。
数码涡旋可变容量压缩机 独有的数码涡旋压缩机采用最新控制技术,可实现精确操作,并且能效显著高于其他压缩机技术。除了可靠的涡旋设计优势外,数码涡旋技术还可实现 20-100% 之间的无级可变容量调节,使输出能够精确匹配房间不断变化的制冷需求。比传统的热气旁路方法更高效。通过减少压缩机循环和部件磨损来提高可靠性。由于压缩机可以轻松适应不断变化的负载条件并提供精确的温度控制,因此性能得到改善。与变频压缩机相比,油回流更佳。与变频压缩机不同,不存在谐波噪音问题。
提高能源效率的技术 目前,实现高效燃烧过程的主要方法有两种。第一种方法是使用高脉冲(或高速)燃烧器。这些燃烧器通过高流出速度将热气直接返回燃烧室,大大增加了炉内的湍流。第二种方法是在燃烧过程中使用纯氧代替环境空气,从而减少体积流量,从而减少废气损失。但燃烧所用的能源仍然是化石燃料,导致不良排放。在过去的几十年里,人们开发了几种组件和工艺,利用废热提供电力、制冷和工艺热,进一步提高了热系统的效率。4
大士发电私人有限公司将与燃气轮机 (GT) 原始设备制造商三菱重工合作实施燃气轮机“F”技术升级,包括在涡轮冷却空气 (TCA) 冷却器中应用逆变器(变速驱动)电机,以提高能源效率并减少联合循环电厂 1&2(“CCP 1&2”)的碳排放。此次升级是大士能源努力实现能源效率改进和履行脱碳措施的一部分。能源效率改进项目主要侧重于通过应用三菱最新的燃气轮机技术对现有的燃气轮机热气路径部件进行升级。要升级的部件包括选定的涡轮叶片、轮叶、环段和轮盘。这些将被替换为
热失控预防和延迟是电池组制造商在设计电池组时必须考虑的主要因素之一。如果电池组内的某个锂离子电池单元因穿孔、过度充电或制造缺陷而受损,它将释放气体和热量,损坏其他电池单元并可能导致热事件的连锁反应。一旦发生热失控事件,电池组内的压力会急剧增加,同时会有大量热气流从电池组中喷出。在电池组配置中加入通风口可以确保释放压力,防止电池爆炸。在发生灾难性故障的情况下,设计一条既定的热气排气路径可确保喷出的气体远离其他电池单元,最重要的是,远离客舱。
我们提出了一种方案,以通过光子介导的相互作用来控制和增强原子BLOCH振荡,该相互作用由具有不稳定的晶格和空腔波长的站立腔支撑的光学晶格中。我们的方案使用位于光腔中的位置依赖性原子 - 轻度耦合,以从热气开始的目标晶格位点在空间上准备一系列原子。在此初始状态下,我们利用了分散位置依赖性原子腔耦合来对单粒子bloch骨进行进行无损测量,并生成由原子运动自调的长距离相互作用。后者导致深层晶格状态中的动力相变和Bloch振荡在浅晶格状态中的扩增。我们的工作引入了在最先进的空腔QED实验中可访问的可能性,以探索自动触发潜力中多体动态的可能性。
• 无与伦比的节能效果 – GTS 持续将干燥机容量与负载相匹配,在典型运行条件下可节省高达 80% 的能源。• 简单可靠 – 就像家用冰箱一样,GTS 使用经过时间考验的简单冷却回路,可实现无故障运行。• 恒定露点 – GTS 的热存储可轻松消除突然的负载变化。• 快速启动 – 使用 GTS 时,无需等待“冷却”期即可施加负载。• 持续运行 – 一旦启动 DEG 干燥机,无需关闭 – GTS 将持续监控负载并相应地执行,无需使用耗能泵。• 使用寿命长 – 无需热气旁路来控制其容量,制冷剂压缩机运行温度更低且频率更低,从而延长了 DEG 干燥机的使用寿命。
