自 20 世纪 50 年代以来,硅及其原生氧化物 SiO 2 就已用于半导体技术,并且对于当今新型器件技术的开发仍然至关重要。最近的理论和实验研究表明,制造高质量的界面层对于现代纳米级器件的可靠运行至关重要。本文提出了一种基于第一性原理的方法,从理论上评估 2 纳米以下超薄层范围内技术相关的 Si(100) 表面的热氧化过程。通过从头算分子动力学和基于密度泛函的紧密结合模拟动态模拟氧化过程。我们定性地解释了实验上众所周知但理解甚少的初始氧化阶段氧化速率下降,这是各种氧化机制之间的复杂相互作用,例如表面的快速 O 2 解离、由分子前体状态介导的较慢氧结合以及 O 2 通过氧化物的扩散。我们的模型结合了以前报告的实验见解,形成了 Si 氧化物生长的全面图像。发现氧化物表面层立即非晶化的有力证据,并确定这是晶格振动的直接结果。此外,我们的建模方法是一种基于晶体硅表面的逐步氧化来生成逼真的非晶界面结构的新方法,也可以扩展到其他材料系统。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。
摘要:进行这项研究是为了确定与丁基羟基甲苯甲酸(BHT)相比,从蓝莓加工的副产物获得的两个冻干提取物(BHT)在延迟受到高温供热的阳光氧化的脂质氧化方面,延迟了在180°C; cynody profe prosection frofe profe proffereptry profe profe profterecty profe proftery profter profe proftery cy proftery cy to profe proftery cy prowsy cy prowsy controferative propproudication conteragy的副产子较高。从罗马尼亚,阿里森尼(Alba County)和帕尔蒂尼(Sibiu County)的两个区域的自发性植物中收获了水果,并根据Abbe和PBBE的起源位置记录了蓝莓副产品提取物(BBE)。根据过氧化物值(PV),p-苯胺值(p -AV),研究脂质热氧化的进展,通过硫巴比妥酸(TBA)方法评估的TBA-甲基二醛相互作用的响应,总氧化(Totox)值(Totox)值(Totox)值(Totox)值和抑制油氧化(IOO)。记录的数据强调了BBE对脂质热氧化的抑制作用很高。抑制性效应是浓度依赖性的,因此,脂质氧化程度与BBE剂量相反。与800 ppm bbe(Abbe,PBBE)补充的油样品暴露于高温加热12 h,导致评估指数的显着减少,与无添加剂的阳光相比,与以下方式相比:PV(46%; 45%; 45%; 45%),p-av(21%; 17%; 17%; 17%; 17%; 17%; 11%)。中等水平的500 ppm BBE抑制了类似于200 ppm bht的脂质氧化。关于起源对BBE抑制脂质氧化降解的潜力的影响,据指出,源自蓝莓在一个具有中等沉淀和较高温度的地区生长的蓝莓,显示出对脂质热氧化的抑制作用更强的抑制作用。报告的结果表明,BBE代表了有效的天然抗氧化剂,可以成功地应用这些抗氧化剂,以改善在各种高温食品应用中使用的阳光油的热氧化稳定性。
这项工作提供了从香草素衍生物香草醇合成的高性能环氧树脂的全面的热机械和流变特征。该研究包括对固化和分解动力学的完整分析,该动力学能够开发出胶凝,玻璃化和树脂降解的时间温度转换图。这些地块允许人们确定最佳的时间和温度处理条件,从而产生最佳的机械性能。动力学预测和实验结果表明,该树脂可以在短短几个小时内在室温下固化,形成坚固的胶合玻璃。通过在TG∞高于TG∞= 85.4°C的树脂后固化树脂来实现,具有2.7 GPA的动态储存模量,该基于Bio的树脂被证明是化石基质的可持续替代品,其主要来源是其主要来源的Bisphenol a Dig dig dig dig dig dig ligcidylcidyl ether etherycidyl Ether。 热氧化是高温下机械恶化的主要原因,如FTIR光谱揭示。,具有2.7 GPA的动态储存模量,该基于Bio的树脂被证明是化石基质的可持续替代品,其主要来源是其主要来源的Bisphenol a Dig dig dig dig dig dig ligcidylcidyl ether etherycidyl Ether。热氧化是高温下机械恶化的主要原因,如FTIR光谱揭示。
1技术和过程技术的选择BJT,CMOS和BICMOS集成电路,硅技术与GAAS。2个材料特性。3相图和固体溶解度。4晶体生长。 5热氧化。 6扩散(1)。 7扩散(2)。 +第7周评估 +中期考试。 8离子植入。 9蚀刻和清洁。 10种现代印刷技术。 11外延和化学蒸气沉积(CVD)。 12金属化。 +第12周考试13过程集成(CMOS和BJT)。 14测试程序和测试模式,测试流程图,计划和策略。 15故障诊断和模拟,测试设备。 s t u d e n t g r a d i n g&a s s s s s s s s s s s s s s s m n t4晶体生长。5热氧化。 6扩散(1)。 7扩散(2)。 +第7周评估 +中期考试。 8离子植入。 9蚀刻和清洁。 10种现代印刷技术。 11外延和化学蒸气沉积(CVD)。 12金属化。 +第12周考试13过程集成(CMOS和BJT)。 14测试程序和测试模式,测试流程图,计划和策略。 15故障诊断和模拟,测试设备。 s t u d e n t g r a d i n g&a s s s s s s s s s s s s s s s m n t5热氧化。6扩散(1)。 7扩散(2)。 +第7周评估 +中期考试。 8离子植入。 9蚀刻和清洁。 10种现代印刷技术。 11外延和化学蒸气沉积(CVD)。 12金属化。 +第12周考试13过程集成(CMOS和BJT)。 14测试程序和测试模式,测试流程图,计划和策略。 15故障诊断和模拟,测试设备。 s t u d e n t g r a d i n g&a s s s s s s s s s s s s s s s m n t6扩散(1)。7扩散(2)。+第7周评估 +中期考试。8离子植入。9蚀刻和清洁。10种现代印刷技术。11外延和化学蒸气沉积(CVD)。12金属化。+第12周考试13过程集成(CMOS和BJT)。14测试程序和测试模式,测试流程图,计划和策略。15故障诊断和模拟,测试设备。s t u d e n t g r a d i n g&a s s s s s s s s s s s s s s s m n t
[2025 年 1 月 20 日至 31 日,16:00 至 20:00] ▪ 半导体制造 - 制造半导体器件(如集成电路 (IC))的过程 ▪ CMOS 制造 ▪ 晶体生长和清洗 ▪ 热氧化和后端技术 ▪ 光刻和蚀刻 ▪ 扩散和离子注入 ▪ 沉积和蚀刻(PVD、CVD、PECVD) ▪ 半导体键合、封装和测试 - 保护半导体器件并将其连接到外部环境的过程 ▪ 组装和包装 ▪ 半导体封装中使用的材料,如陶瓷和塑料 ▪ 用于连接组件的引线键合或倒装芯片键合技术 ▪ 测试封装设备以确保其符合性能规范
晶圆处理 湿法清洗 溶剂清洗 Piranha 溶液 RCA 清洗 光刻 离子注入 干法蚀刻 湿法蚀刻 等离子灰化 热处理 快速热退火 炉退火 热氧化 化学气相沉积 (CVD) 物理气相沉积 (PVD) 分子束外延 (MBE) 电化学沉积 (ECD) 化学机械平坦化 (CMP) 晶圆测试 晶圆背面研磨 芯片制备 晶圆安装 芯片切割 IC 封装 芯片附着 IC 键合 引线键合 热超声键合 倒装芯片 晶圆键合 胶带自动键合 (TAB) IC 封装 烘烤 电镀 激光打标 修整和成型 IC 测试
09:00 - 09:25新颖的基于回收的多元醇提升B ar,以挑衅的聚氨酯粘合剂cargill; Be-Gouda Erwin Honcoop摘要:随着行业转向可持续原材料,对可回收材料的需求正在上升。响应,Cargill重新设计了其多元元产品线,引入了最多包含专门用于粘合剂应用的100%再生内容的产品。这些晚期多元醇在聚氨酯粘合剂中既具有耐用性和性能。它们是由从天然油中产生的回收塑料和二氧化糖制成的,导致具有晶体结构的液态醇,可增强对钢和铝的粘附,同时保持柔韧性。生物基二肽和多元醇的碳氢化合物组成提供了驱动性以及强度和伸长率的平衡组合。此外,在这些创新的多元醇中的再生和生物基材料的整合产生了一种独特的配方,可提供出色的水解,热氧化和耐化学性,使其非常适合苛刻的应用程序,例如密封剂,运动服,运动服和自动动力组件。_______________________________________________________________________________________
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。