增材制造 (AM),通常称为 3D 打印,是一种革命性的制造技术,在航空航天、医疗和汽车领域具有重大的工业意义。金属增材制造可以制造复杂的精密零件并修复大型部件;然而,由于缺乏工艺一致性,认证目前是一个问题。开发并集成了一种多功能、廉价的过程控制系统,减少了熔池波动的变化并提高了组件的微观结构均匀性。残余微观结构变化可以通过热流机制随几何形状的变化来解释。晶粒面积变化减少了高达 94%,成本仅为典型热像仪的一小部分,控制软件由内部编写并公开提供。这降低了过程反馈控制的实施障碍,可以在许多制造过程中实施,从聚合物增材制造到注塑成型再到惰性气体热处理。
g 封面图片:Earthship Ironbank,阿德莱德山的一家 B&B。照片由 Philip Glitheroe 拍摄。Earthships 由回收和再利用材料制成。在 Earthship Ironbank 的建造过程中,大约重复使用了 800 个轮胎,另外 300 个用于雨水箱。除了轮胎墙和土堤结构外,Earthship Ironbark 还连接了数据收集系统——它在整个过程中都装有温度传感器,以便更好地了解 Earthship 中的热流。Earthships 是在新墨西哥州发明的,那里的气候与阿德莱德山截然不同,但业主兼建造者 Martin Freney 根据当地情况对设计进行了调整。Martin 面临的挑战之一是寻找墙壁所需的瓶子和罐子;南澳大利亚的容器押金立法意味着很难找到旧瓶子和罐子!第 56 页。
我们研究了由附着在磁绝缘体和金属电极上的单级量子点组成的混合系统的自旋热电特性。磁绝缘体被认为是铁磁类型的,是磁振子的源,而金属铅是电子的储存器。磁绝缘体和金属电极之间的温度梯度会诱导流过系统的自旋电流。产生的磁振子(电)型自旋电流通过量子点转换为电(磁振子)自旋电流。将流过系统的自旋和热流扩展至线性阶,我们引入了基本的自旋热电系数,包括自旋电导、自旋塞贝克和自旋珀尔帖系数以及热导。我们在两种情况下分析了系统的自旋热电特性:在大型点库仑排斥极限下以及当这些相互作用有限时。
我们开发了一种基于自主量子热机的经典计算物理模型。这些机器由连接到不同温度的几个环境的少数相互作用的量子比特 (qubit) 组成。这里利用流经机器的热流进行计算。该过程首先根据逻辑输入设置环境的温度。机器不断发展,最终达到非平衡稳定状态,从中可以通过辅助有限尺寸储层的温度确定计算的输出。这种机器,我们称之为“热力学神经元”,可以实现任何线性可分函数,我们明确讨论了 NOT、3-MAJORITY 和 NOR 门的情况。反过来,我们表明热力学神经元网络可以执行任何所需的功能。我们讨论了我们的模型与人工神经元(感知器)之间的密切联系,并认为我们的模型提供了一种基于物理的替代神经网络模拟实现,更广泛地说,是一种热力学计算平台。
Perkin Elmer Pyris 6 DSC 差示扫描量热仪是一种热通量 DSC。热流是通过测量非常精确已知的热阻上的温差来确定的。该分析仪用于表征材料、设计产品、预测产品性能、优化加工条件和提高质量。Pyris 6 DSC 系统允许直接量热测量、表征和分析材料的热性能。在 PC 上的 Pyris Windows 软件的控制下,Pyris 6 DSC 被编程为从初始温度到最终温度,经历样品材料中的转变,例如熔化、玻璃化转变、固态转变或结晶。通常,Pyris 6 DSC 被编程为以线性速率扫描温度范围,以研究这些吸热和放热反应。吸热和放热可以显示为相对于基线的向上或向下偏差。Pyris 6 DSC 还可用于进行等温实验。
当可再生能源(风能和太阳能)的份额不断增加时,需要储能技术来确保能源系统的稳定性。液态空气储能 (LAES) 是一种很有前途的电能储存技术,具有高能量密度和不受地理限制等优点。然而,独立 LAES 的一个缺点是往返效率 (RTE) 相对较低。在本文中,研究了具有不同压缩和膨胀级数的独立 LAES 系统的性能。所有情况都使用粒子群优化 (PSO) 算法进行优化。最优结果表明,当 LAES 系统中有 2 级压缩机和 3 级膨胀机时,可获得最高的 66.7% 的 RTE。当压缩级数固定时,当膨胀段预热器中的热流和冷流具有接近平行的温度分布时,可获得最高的 RTE。
摘要 作为可穿戴电子设备的热防护基板,由嵌入相变材料和金属层的聚合物材料制成的功能性软复合材料对人体皮肤的热防护具有独特的能力。在此,我们开发了一个分析瞬态相变传热模型来研究带有热防护基板的可穿戴电子设备的热性能。该模型通过实验和有限元分析(FEA)进行了验证。系统全面地研究了基板结构尺寸和热源功率输入对温度管理效率的影响。结果表明,可穿戴电子设备的热管理目标是通过以下热防护机制实现的。金属薄膜通过重新配置热流方向有助于沿平面方向散热,而相变材料则吸收多余的热量。这些结果不仅将促进对包含热防护基板的可穿戴电子设备热性能的根本理解,而且还有助于可穿戴电子设备热防护基板的合理设计。
认识到住宅建筑是一种能源系统 了解建筑围护结构中的热流和隔热 了解空气流动、渗透和空气密封 认识基本的加热、冷却和通风系统 认识到控制湿度对家庭性能的重要性 熟悉能源概念和节能策略 成功的参与者还将获得全国认可的 BPI“建筑科学原理知识证书”。请访问 www.bpi.org 了解更多信息。 学费:整个 NCWK 902L 套餐(包括课程、教科书和考试)500 美元。请联系 LRCC 了解即将到来的课程日期,通常为 1-4 周内四节 3 小时的课程。((对于自学者,更便宜的“建筑科学原理复习”套餐包括 BSP 考试、在线 BSP 参考指南和复习材料/测验。))
摘要 时间平移对称性破缺是马尔可夫开放量子系统中非稳态多体相(即时间晶体)出现的一种机制。近年来,人们对时间晶体的动力学方面进行了广泛的探索。然而,人们对它们的热力学性质知之甚少,这也是由于这些相的内在非平衡性质。在这里,我们考虑了有限温度环境中的典型边界时间晶体系统,并证明了时间结晶相在任何温度下的持久性。此外,我们还分析了该模型的热力学方面,特别是热流、功率交换和不可逆熵产生。我们的工作揭示了维持非平衡时间结晶相的热力学成本,并提供了一个框架来描述时间晶体作为量子传感等可能的资源。由于我们将热力学量与集体(磁化)算子的平均值和协方差联系起来,所以我们的结果可以在实验中得到验证,例如使用捕获离子或超导电路。
摘要:微通道热沉在从不同电子设备的小表面积上去除大量热流方面起着至关重要的作用。近年来,电子设备的快速发展要求这些热沉得到更大程度的改进。在这方面,选择合适的热沉基板材料至关重要。本文采用数值方法比较了三种硼基超高温陶瓷材料(ZrB 2 、TiB 2 和 HfB 2 )作为微通道热沉基板材料的效果。利用有限体积法分析了流体流动和传热。结果表明,对于任何材料,在 3.6MWm -2 时热源的最高温度不超过 355K。结果还表明,HfB 2 和 TiB 2 比 ZrB 2 更适合用作基板材料。通过在热源处施加 3.6 MWm -2 热通量,在具有基底材料 HfB 2 的散热器中获得的最大表面传热系数为 175.2 KWm -2 K -1。