宏观系统的热力学是一种可追溯到19世纪的封闭理论。随着介观和纳米物理的发展,应制定基于量子力学的小型系统的热力学。 的确,在过去的几年中,这个热门话题不仅引起了人们的关注,这不仅是一种基本理论,而且还引起了其在构建小型热发动机,纳米机器[1]和分子电动机[2]中的应用。 由于小型系统(几乎)总是表现出quan tum特征,因此在开放量子系统中面临着过程的非平凡问题[3,4]。 作为统计力学是“原子世界与物体世界之间的桥梁” [3] [3]设计任何设备的“构建块”本质上是基于自然的量子性能,因此面临着高度非平凡的量子不可逆性的问题。 在本文中,我们将注意力限制在非常稳定的系统的特定特性上:基于非渗透材料的传播量子的热流[5]。 量子位在不同温度下耦合到两个无准热库。 很明显,任何使用热能流动的任何热发动机或任何其他用来运行的是热电导的阶段。随着介观和纳米物理的发展,应制定基于量子力学的小型系统的热力学。的确,在过去的几年中,这个热门话题不仅引起了人们的关注,这不仅是一种基本理论,而且还引起了其在构建小型热发动机,纳米机器[1]和分子电动机[2]中的应用。由于小型系统(几乎)总是表现出quan tum特征,因此在开放量子系统中面临着过程的非平凡问题[3,4]。作为统计力学是“原子世界与物体世界之间的桥梁” [3] [3]设计任何设备的“构建块”本质上是基于自然的量子性能,因此面临着高度非平凡的量子不可逆性的问题。在本文中,我们将注意力限制在非常稳定的系统的特定特性上:基于非渗透材料的传播量子的热流[5]。量子位在不同温度下耦合到两个无准热库。很明显,任何使用热能流动的任何热发动机或任何其他用来运行的是热电导的阶段。
TI-6AL-4V文章是使用直接能量沉积(DED)类型的高级添加剂制造技术生产的。该添加剂制造过程的关键独特特征是通过低压(<20kV)气体驱动式EB枪生成的空心锥电子束,用于加热和融化基板和轴向饲养的电线。这样的配置确保从电线端到基板,融合区域的特定温度梯度以及液态金属池的热流。3D制造过程中加热,熔化和冷却的这种条件为可控的微观结构形成(包括晶粒尺寸和材料纹理)提供了能力。讨论了加工参数和冷却条件对结晶,晶粒形成和固化材料内部结构的影响。优化处理参数允许生产具有各向同性微结构和机械性能的3D Ti-6al-4V文章,这些特性满足了TI-6AL-4V合金的标准要求。
扩展具有明显表面表达的外部区域外的地热能使用的关键部分是对地壳热结构有很好的了解。但是,新西兰大部分地区的地壳温度分布尚不清楚。高质量的地壳温度测量值稀疏且分布不均。此外,新西兰的热流动方式很复杂,对流体对流和对流的影响很大,以及与相对年轻且高度构造的陆地相关的瞬态过程(例如,最近的沉积和侵蚀)。由于缺乏关于地壳岩石热性能的良好数据,预测地壳温度的进一步限制。我们正在使用一维瞬态热流建模方法开发国家温度图。为了支持该模型,我们已经建立了热性能测量能力,并将测量与地球化学和矿物学数据结合使用来确定热性能。本文为将各种数据集集成到新西兰的国家温度模型中介绍了进展。
TWI 成立于 1993 年,设计并生产使用红外 (IR) 摄像机、专用软件和硬件测量材料中热流并生成部件地下图像的检测系统。1998 年,TWI 获得了 NAVAIR 第二阶段小型企业创新研究 (SBIR) 合同,以开发用于复合材料的手持式红外无损检测 (NDI) 系统。该项目催生了 ThermoScope®,这是一种便携式系统,旨在将热成像技术从实验室环境转移到检测现场。ThermoScope 弥补了超声波(一种速度太慢而无法有效检测大面积区域的点检测方法)和标准热成像技术(能够检测较大区域但属于定性、需要解释且对某些缺陷类型不敏感)之间的差距。如今,ThermoScope 广泛应用于从复合体育用品到军用头盔、直升机旋翼叶片和航天器等各个行业的 NDI 应用。
摘要:固体中热传输的动态调整在科学上吸引了电子设备中热传输控制的广泛应用。在这项工作中,我们演示了一个热晶体管,该设备可以使用外部控制来调节热流,该设备通过拓扑表面状态在拓扑绝缘体(TI)中实现。通过使用沉积在Ti膜上的薄电介质层的光控来实现热传输的调整。使用微拉曼温度法测量栅极依赖性导热率。在室温下,晶体管的开/关比为2.8,可以通过光门传感进行连续,重复地以数十秒钟的速度切换,并且通过电控速度更快。这样的热晶体管具有较大的开/关比和快速切换时间,为未来电子系统中的主动热管理和控制提供了智能热设备的可能性。关键字:热晶体管,热开关,静电门,拓扑绝缘子
摘要 热管理是现代电子、航空电子、汽车和储能系统中面临的重要挑战。虽然通常使用被动热解决方案(如散热器或散热器),但主动调节热流(例如通过热开关或二极管)将提供对热瞬变管理和系统可靠性的额外控制程度。本文我们报告了第一个基于柔性、可折叠石墨烯膜的热开关,其工作电压低(约 2 V),热开关比高达约 1.3。我们还采用主动模式扫描热显微镜来实时测量设备行为和开关。针对基于双夹悬浮膜的热开关的一般情况,开发了一个紧凑的分析热模型,突出了热设计和电气设计挑战。系统级建模展示了调节温度波动和平均温度作为开关比的函数之间的热权衡。这些基于石墨烯的热开关为在密集集成系统中主动控制快速(甚至纳秒)热瞬变提供了新的机会。
摘要响应于对各种工业过程中对更有效传热技术的需求不断增长的需求,纳米流体的发展已成为一种有希望的解决方案。与固体相比,传统的传热液(例如矿物油,乙二醇和水)的热导电性相对较低,从而限制了热交换器的紧凑性和效率。纳米流体是通过在碱流体中悬浮超铁金属或非金属固体粉末而产生的,由于固体材料的较高导电性,其热性能增强。本文回顾了纳米流体的制备,导热率测量和影响因子,重点是导热率,作为改善热传递的主要驱动力。纳米流体的制备涉及一步或两步方法,而两步方法更常用于氧化物纳米颗粒(NPS),例如Al2O3,ZnO,MGO,MGO,TIO2和SIO2。该研究讨论了超声处理和磁力搅动等稳定技术,以确保纳米流体的均匀悬架和长期稳定性。使用短热线(SHW)和瞬态热线(THW)技术进行热导率测量,并考虑了非稳态的性质和潜在的误差源。这项研究强调了严格的实验设计和准确的数据分析的重要性,以解决热导率测量的复杂性和可变性,最终有助于纳米流体技术在有效传热溶液中的发展。关键字:纳米流体,热有限,纳米颗粒,纳米流体的稳定性1。引言不断增长的热流和快速收缩,导致选择了越来越多的有效传热技术。矿物油,乙二醇和水是许多工业过程中不断需要的传热液的例子,包括生产微电子产品,发电,化学反应以及加热和冷却。与大多数固体相比,这些常见流体的低热传递特性是热交换器高紧凑性和效率的关键障碍之一。增加工作培养基的热导电性的一种创造性方法是悬挂普通流体中的超铁金属或非金属固体粉末,因为大多数固体材料都比液体具有优越的导热性。如今,“纳米流体”一词在热传输领域非常明显。的热品质,包括粘度,特定热量,对流传热系数和临界热流,已成为几项研究的主题。
1。Han J,Norio n(2001)混合热传导边界的热应力问题周围是一个任意形状的孔,在均匀的热孔下裂缝。J热应力24(8):725–735 2。Murakami Y等人(1987)应力强度因子手册,2:728。Pergamon Press/纽约牛津/首尔/东京3。Murakami Y等人(1992)应力强度因子手册,第三版。Pergamon Press/纽约牛津/首尔/东京,P 728 4。sih GC(1962)在裂纹尖端附近的热应力的奇异特征上。ASME,J Appl Mech 29:587–589 5。Hasebe N,Tamai K,Nakamura T(1986)对均匀热流下的扭结裂纹的分析。 ASCE,J ENG MECH 112:31–42 6。 chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。 J Therm Recors 15:519–532 7。 Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。 J THERM压力16:215–231 8。 Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。 J Therm Rescorm 21:129–140 9。 Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。 J THERM压力15:85–99 10。 Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。 J THERM压力17:285–299 11. Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。 int J Sol结构30:3899–391 12。 ASME,J Appl Mech 27:635–639 13。Hasebe N,Tamai K,Nakamura T(1986)对均匀热流下的扭结裂纹的分析。ASCE,J ENG MECH 112:31–42 6。 chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。 J Therm Recors 15:519–532 7。 Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。 J THERM压力16:215–231 8。 Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。 J Therm Rescorm 21:129–140 9。 Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。 J THERM压力15:85–99 10。 Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。 J THERM压力17:285–299 11. Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。 int J Sol结构30:3899–391 12。 ASME,J Appl Mech 27:635–639 13。ASCE,J ENG MECH 112:31–42 6。chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。J Therm Recors 15:519–532 7。Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。J THERM压力16:215–231 8。Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。J Therm Rescorm 21:129–140 9。Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。J THERM压力15:85–99 10。Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。J THERM压力17:285–299 11.Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。int J Sol结构30:3899–391 12。ASME,J Appl Mech 27:635–639 13。Florence L,Goodier JN(1960),由于绝缘卵形孔对均匀热流的干扰引起的热应力。Hasebe N,Tomida A,Nakamura T(1988)由于均匀的热量吹动而导致的圆形孔的热应力。Yobayexiqe 11:381–391 14。 tuji M,Hasebe N(1991)裂纹的热应力,该裂纹是由于均匀的热量吹动的菱形孔的一角。 Trans JPN Soc Mech Eng 57:105-110(日语)Yobayexiqe 11:381–391 14。tuji M,Hasebe N(1991)裂纹的热应力,该裂纹是由于均匀的热量吹动的菱形孔的一角。Trans JPN Soc Mech Eng 57:105-110(日语)
摘要 .本文探讨了基于“绿色”能源利用的高层建筑节能技术方案,包括:采用风光互补发电装置和垂直轴涡旋风力发电装置,既利用高空水平风流的能量,又利用上升气流的能量。在分析现有技术的基础上,提出了建设风光互补发电装置节约高层建筑能源的一般原则,包括:为保证安全运行和无远程干扰,建议采用具有捕捉风流的空腔的穹顶设计来封闭风力涡轮机;为保证环境友好和便于管理,建议采用模块化设计的各种垂直涡旋风力涡轮机;为高效利用太阳能,建议将光伏电池集成到穹顶的外部结构中;为降低工程造价,建议利用现有的高层建筑。提出一种涡流风力发电装置,可以利用小风和低位热流,减少低频振动,提高风能利用的稳定性和效率,并且易于安装、维护和修理。
高级窗户测试平台能够研究创新立面系统与照明和暖通空调系统之间的系统级相互作用。用户可以在三个并排的全尺寸仪表测试室中进行户外测试。每个测试室都隔热,因此可以进行比较性地测量窗户热流。这些测试室旨在模拟典型的私人办公室,以便进行采光、舒适度和人为因素研究。外部和内部窗户附件可以使用提升装置每三到五天旋转一次,从而可以在一个至日至日期间评估最多八种不同的测试条件。科学家与业界合作审查原型系统;制定动态智能立面系统的控制系统设计或描述创新采光系统产生的光环境。性能数据用于评估市场准备情况,并在商业发布之前量化新技术的能源和非能源效益。