选择最合适的保存方法对于维持生物中微生物的生命力,交流电,免疫原性和遗传稳定性至关重要(Simões2013)。最常见的保存技术是基于通过亚培养或通过脱水和冻结来维持持续生长的持续生长(Agarwal and Sharma 2006)。连续培养仅用于短期存储(Ryan等人。2000)由于该方法是费力的,并且经常重新培养可能会导致污染或SUD DEN菌株变性,这可能会导致病学,生理或毒力变化(Vasas等人。1998; Shivas等。 2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。1998; Shivas等。2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。2005; Bégaud等。2012; 2013)。此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人2000; Ryan等。2019)。因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人2019)。
氮沸点仪 ................................................. 65 461 型简易液态 N 2 仪 ...................................... 66 459 型低温恒温器 ...................................................... 67 915 平行管搅拌液浴 ........................................ 68 - 69 785 平行管搅拌液浴 ...................................................... 70 - 72 Orion 796 搅拌液浴 ...................................................... 73 - 75 Hydra 798 搅拌液浴 ...................................................... 76 - 78 813 搅拌冰/水浴 ...................................................... 79 820 型大容量校准浴 ...................................................... 80 液体选择指南 ...................................................................... 81
氮沸点仪................................................. 65 461 型简易液态 N 2 仪................................. 66 459 型低温恒温器............................................... 67 915 型平行管搅拌液浴................................. 68 - 69 785 型平行管搅拌液浴................................. 70 - 72 Orion 796 搅拌液浴.................................... 73 - 75 Hydra 798 搅拌液浴.................................... 76 - 78 813 搅拌冰/水浴.................................................... 79 820 型大容量校准浴.................................... 80 液体选择指南.................................................................... 81
氮沸点仪................................................. 65 461 型简易液态 N 2 仪................................. 66 459 型低温恒温器............................................... 67 915 型平行管搅拌液浴................................. 68 - 69 785 型平行管搅拌液浴................................. 70 - 72 Orion 796 搅拌液浴.................................... 73 - 75 Hydra 798 搅拌液浴.................................... 76 - 78 813 搅拌冰/水浴.................................................... 79 820 型大容量校准浴.................................... 80 液体选择指南.................................................................... 81
散热器:固有块体材料特性 – 通常为铝或铜(散热器、液冷板、蒸气室) TIM2:半导体封装外部;θ T2 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(外壳表面、散热器) 外壳(或盖子):固有块体材料特性 – 通常为镀镍铜* TIM1:半导体封装内部;θ T1-C 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(芯片表面、盖子内表面);或者, TIM0:无盖半导体封装(“裸片”封装) 芯片:固有块体材料特性(Si、SiC、GaN、GaAs 等)
这项工作的一部分是在三次借调期间完成的:在德国亚琛工业大学矿物工程研究所 (GHI) 工作了两个半月;在葡萄牙科英布拉土木工程系结构工程可持续性与创新研究所 (ISISE) 工作了两个月;在奥地利莱奥本的 RHI-Magnesita 技术中心工作了两周。非常感谢我的借调导师和技术人员在借调期间和借调后给予的大力帮助。尽管存在设备问题、时间有限和疫情,但我还是取得了非常有趣的成果,有时甚至出乎意料。
ÖZ ................................................ .................................................. ................................vii
此外,在产品复杂性不断增加的影响下,封装正从 IC 技术推动因素演变为主要的电子产品/系统差异化因素。因此,当今的封装技术主要由市场应用需求驱动,降低每项功能成本是主要的技术开发和执行挑战 [2]。如表 1 所示,行业路线图确定了六种不同的半导体产品类别,每种产品都有特定的“价格点”,这些价格点是从技术产品市场上的相互竞争中发展而来的。SIA/NEMI 产品类别包括:“商品”(或“低成本” - 通常低于 300 美元)、“手持式”(通常低于 1000 美元)、“成本/性能”(低于 3000 美元)、“高性能”(超过 3000 美元)、“恶劣环境”和内存组件。这些类别共同涵盖了半导体行业的大部分产品流。
致力于传播材料 TMF 行为领域的最新研究成果。通过疲劳和断裂委员会 E-8 的成员,ASTM 传统上对热疲劳和热机械疲劳有着浓厚的兴趣,从讨论该问题的众多 STP 中可以看出。1968 年,第一篇关于 TMF 的 ASTM 论文出现在 STP 459《高温疲劳》中。Carden 和 Slade 讨论了 Hastelloy X 在应变控制等温和 TMF 条件下的行为。《疲劳测试手册》(STP 566,出版于 1974 年)描述了一种试样热疲劳测试技术以及协和式飞机机身的结构 TMF 测试系统。STP 612,材料和部件的热疲劳(1975)是第一届关于热和热机械疲劳的综合 ASTM 研讨会的论文集。论文主题包括 TMF 测试技术、寿命预测方法以及陶瓷和定向凝固高温合金等先进材料的 TMF 行为。1988 年举行的题为“低周疲劳”(STP 942)的研讨会包含五篇关于热和热机械疲劳的论文。介绍了 TMF 测试技术、变形行为和建模以及微观结构损伤观察。第一个专门用于材料 TMF 的 ASTM STP(也是本卷的前身)是 1991 年材料 TMF 行为研讨会 (STP 1186) 的论文集。几篇论文讨论了环境攻击对承受 TMF 负载的高温合金性能和寿命建模的作用。此外,本 STP 包含两篇讨论金属基复合材料 TMF 的论文,这表明人们对此类材料在高温应用方面的兴趣正在兴起。
Theta Ja 定义为结温或芯片温度与环境温度之间的热阻。环境温度定义为器件周围自由空气的温度。如果器件处于外壳内,则应在外壳内测量环境温度。公式 1 显示了芯片温度与周围空气温度、Theta Ja 和器件耗散功率之间的依赖关系。如果芯片与周围空气之间存在理想的热传递,则 Theta Ja 等于零且 T J = T A 。或者,如果 IC 在关闭时不耗散任何功率,则 T J = T A 。许多因素都会阻碍热传递,这就是将 Theta Ja 定义为电阻的原因。同样,Theta Ja 定义为对周围空气与封装内芯片位置之间热传递的阻力。Theta Ja 的单位是器件耗散功率每瓦摄氏度。例如,如果 Theta Ja = 26 ° C/W,则设备每消耗 1 W 功率,芯片温度就会升高 26 ° C。