抽象的水污染已成为一个全球问题。废水的来源主要包括工业和商业领域。为了满足清洁水的指数增加,需要有效的技术来处理废水。已经采用了几种技术,例如氧化还原反应,膜过滤,机械过程,化学处理和吸附技术。但是它们的成本和有效性仍然是一个主要问题。在这项研究中,我们通过使用简单的热液技术合成NICOMN MOF来采用有效的废水处理技术,并使用XRD和SEM来表征其可能的特性。XRD分析证实了NICOMN MOF的成功合成。通过SEM分析给出了有关表面形态和拓扑的足够信息,SEM分析证明是一种纳米多孔结构,具有高表面积有效的污染物中污染物的吸附和氧化催化。此外,观察到MOF之间的高静电吸引力,可能会吸引相对充满电的污染物。结果表明,用于废水处理应用中合成的NICOMN MOF具有很高的潜力。
3。P.M.B.联邦技术大学机械工程系 1526,Owerri,IMO州,尼日利亚摘要:Exergy分析是能源工程的关键方面,无法过度拉伸。 由于其不断发展的性质,在该领域进行持续研究的需求至关重要。 这项研究涉及分析位于尼日利亚州IMO州奥特里的实验性国内尺度太阳能加热系统。 与研究有关的文献综述夫妇。 它旨在分析太阳能加热系统的效率。 本研究涉及的基本材料是太阳辐射收集器面板,储罐,泵,热交换器,管道单元和传热液。 从结果中记录到收集器出口温度是太阳辐射和时间的函数。 最大收集器效率发生在下午1点。设置的位置时间。 进一步表明,平板太阳能热水器(SWH)的性能最高为97%,最低效率为38%,下午1点的效率最低为38%。下午5点分别。 下午1点,发电仪的最高效率为60%。上午9点最低的是1.9% 因此,由于与太阳能研究中的基本数量相称,充电分析是一种有用的方法,用于优化平板太阳能加热系统的性能。 关键词:平板收集器,充电,太阳辐射和温度。 1。 简介P.M.B.联邦技术大学机械工程系1526,Owerri,IMO州,尼日利亚摘要:Exergy分析是能源工程的关键方面,无法过度拉伸。 由于其不断发展的性质,在该领域进行持续研究的需求至关重要。 这项研究涉及分析位于尼日利亚州IMO州奥特里的实验性国内尺度太阳能加热系统。 与研究有关的文献综述夫妇。 它旨在分析太阳能加热系统的效率。 本研究涉及的基本材料是太阳辐射收集器面板,储罐,泵,热交换器,管道单元和传热液。 从结果中记录到收集器出口温度是太阳辐射和时间的函数。 最大收集器效率发生在下午1点。设置的位置时间。 进一步表明,平板太阳能热水器(SWH)的性能最高为97%,最低效率为38%,下午1点的效率最低为38%。下午5点分别。 下午1点,发电仪的最高效率为60%。上午9点最低的是1.9% 因此,由于与太阳能研究中的基本数量相称,充电分析是一种有用的方法,用于优化平板太阳能加热系统的性能。 关键词:平板收集器,充电,太阳辐射和温度。 1。 简介1526,Owerri,IMO州,尼日利亚摘要:Exergy分析是能源工程的关键方面,无法过度拉伸。由于其不断发展的性质,在该领域进行持续研究的需求至关重要。这项研究涉及分析位于尼日利亚州IMO州奥特里的实验性国内尺度太阳能加热系统。与研究有关的文献综述夫妇。它旨在分析太阳能加热系统的效率。本研究涉及的基本材料是太阳辐射收集器面板,储罐,泵,热交换器,管道单元和传热液。从结果中记录到收集器出口温度是太阳辐射和时间的函数。最大收集器效率发生在下午1点。设置的位置时间。进一步表明,平板太阳能热水器(SWH)的性能最高为97%,最低效率为38%,下午1点的效率最低为38%。下午5点分别。下午1点,发电仪的最高效率为60%。上午9点最低的是1.9%因此,由于与太阳能研究中的基本数量相称,充电分析是一种有用的方法,用于优化平板太阳能加热系统的性能。关键词:平板收集器,充电,太阳辐射和温度。1。简介
近年来,由于能源短缺和环境污染,低成本,高能量密度和环保特征的锂硫电池(LSB)引起了广泛的关注。然而,由锂多硫化物(Lips)引起的班车效应大大降低了LSB的cy效和寿命。为了解决此问题,我们通过一步热液方法设计了一个CO 3 O 4 -RGO复合材料,该方法用于修改聚丙烯(PP)分离器。CO 3 O 4 -RGO复合材料具有较高的电子电导率和吸附性能,可提供电子传输的通道并有效抑制嘴唇的班车。用CO 3 O 4 -RGO-PP分离器组装的锂硫电池具有令人满意的特定能力。在0.1 c时,第一个散落能力达到1365.8 mAh·g -1,并且在100个周期后,放电能力保持在1243.9 mAh·g -1。在0.5°C时350个循环后,放电能力为1073.9 mAh·g -1,每个周期的平均容量衰减率为0.0338%。这些结果表明CO 3 O 4 -RGO- PP分离器将在高性能LSB中具有良好的应用前景。
尽管目前新墨西哥州尚未生产锂,但我们在 1920 年至 1950 年期间占美国锂产量的 10% 左右。大部分锂产量来自陶斯县皮库里斯地区的哈丁伟晶岩矿。自 1950 年以来,新墨西哥州再也没有开采过锂,但目前正在探索该州可以经济生产的锂资源。新墨西哥州中北部的伟晶岩中存在几种已知的锂资源,但这些资源不太可能在不久的将来得到开发。火山粘土遍布该州的许多地方,其中一些具有近期开发的潜力。里奥格兰德裂谷的波波托萨组凝灰岩层中含有大量锂。银城附近巴克霍恩地区的吉拉砾岩中的硅藻土和沸石矿床是另一种潜在的锂资源。盐水和热液/地热矿床在短期内提供了一些最好的锂和其他矿物来源。洛兹堡、图拉罗萨和埃斯坦西亚盆地都拥有可测量的锂资源,使其成为潜在的开发区。
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
浓度约为250 m,温度高于正常海水温度2.1°C的温度。巨人(长度为1 m),红色,无肠蠕虫(Riftia spp。)附近这些热液通风孔提供了一种独特形式的互助和动物营养形式的例子,其中化学可营养细菌性内共生体被维持在管蠕虫宿主的专用细胞中(图28.6)。迄今为止,所有培养这些微生物的尝试都没有成功。管蠕虫从海水中吸收硫化氢并将其与血红蛋白结合(蠕虫是鲜红色的原因)。然后以这种形式将硫化氢运输到细菌中,该硫化物使用硫化物还原能力在加尔文循环中固定二氧化碳(见图10.4)。本周期所需的CO 2通过三种方式将其传输到细菌上:自由溶解在血液中,与血红蛋白融为一体,并以苹果酸和琥珀酸酯等有机酸的形式传输到细菌中。这些酸是脱蜡的,以释放CO 2在滋养小体中,含有细菌共生体的组织。使用这些机制,细菌
近年来,随着新兴国家工业化进程加快、经济发展迅速,矿产资源需求不断增加,矿产资源可持续供给危机感不断增强,资源民族主义思潮回潮。引发资源供给结构变化,正处于重大变革时期。随着陆地资源日益枯竭,深海资源的勘探和采集研究正在快速进展。在日本的专属经济区和大陆架,已发现许多深海矿产资源潜力区,如含有金属和稀有元素的黑子型海底热液矿床、富钴结壳等。据估计,日本拥有世界最大的黑子型海底热液矿床潜在资源量,拥有仅次于美国的世界第二大富钴结壳潜在资源量。然而,如何将潜在有前景的海域缩小到具有资源吸引力的海域,这一方法尚未完全确立。此外,由于深海海底采矿技术刚刚起步,矿藏的勘探和开采活动仍处于起步阶段。因此,需要开发新的勘探技术并开发有效的采矿技术。此外,作为世界第三大经济体,日本强劲的工业活动和丰富的生活方式得益于其丰富的能源和资源储备,包括石油、天然气、铜和镍。换句话说,日本是世界上最大的能源和资源消费国之一。然而,日本自身的能源和资源并不多,目前大部分依赖从其他国家进口。此外,近年来,在亚洲经济高速增长的背景下,全球对这些资源和能源的需求急剧增加,日本确保稳定供应的难度加大。尤其是日本的石油、天然气、铜、镍等矿产资源几乎100%依赖海外,因此,海外资源竞争加剧、产地冲突、甚至经济形势的变化,供需环境的变化引起需求波动,使得资源价格长期呈上涨趋势,为资源价格波动创造了条件。随着人口向城市集中、老龄化导致的生活方式改变等原因,电气化不断推进,能源需求不断扩大,确保能源和资源对于改善人们的生活至关重要。因此,开发自己的海洋资源对日本来说极其重要。但对深海采矿车辆的实时监控研究较少,导致高效深海采矿变得困难。常规深海探测方法包括大地测量卫星遥感技术、船载声纳技术、自主水下机器人(AUV)巡航成像技术等,但这些方法难以实现实时探测,且存在易被篡改等问题。受环境影响较大,准确率较低。可见光成像系统的引入对于准确定位广阔海底的资源并有效收集至关重要。为此,我们开展了研究,利用先进的人工智能技术来克服这些问题。
进行热交换器,制冷系统或发电厂。不幸的是,通常的传热液(例如水和聚合物溶液)具有相对较低的热电导率。改善热萃取的一种方法是将传热液的流量与某些固体材料的高热电导率相结合,例如金属,金属氧化物或不同的碳材料:碳黑[6],碳纳米管[9],碳纳米含量[4] [4]或石墨烯Nananoplatelets [29]。然而,使用微米尺寸的固体材料的悬浮液会导致并发症,例如磨损,沉积和堵塞。石墨烯是六角形键合的碳原子的单原子薄片,由Novoselov等人优雅地获得并表征。[18],现在是研究最多的材料之一。The importance of graphene nanoplatelets and their benefits have been investigated, and the following advantages have been mentioned [ 22 ]: (1) it is relatively easy to synthesize, (2) it has long suspension time (leading to stable particle suspensions), (3) graphene nanoplatelets have large surface area/volume ratio, and (4) present low erosion, corrosion and clogging.这种悬浮液的动态粘度也是传热中实际应用的重要特性。大多数科学文献是关于水中的悬浮液,有时是表面活性剂/分散剂[1、2、10、12、19],证明了石墨烯纳米片浓度会导致粘度非线性增加。meh-Rali等。伊朗曼什等人。此外,几位作者研究了石墨烯纳米片的粘度[27],并显示出强大的温度降低。[16]制备的均质石墨烯纳米板 - 让使用高功率超声探针的悬浮液,以浓度为0.025、0.05、0.05、0.075和0.1质量%,对300、500、500、500和750 m 2 g-1的三个不同表面区域进行悬浮液。他们测量了在20至60°C的温度下,水平纳米片的粘度与剪切速率的粘度。观察到粘度随温度降低,但对浓度和特定表面积敏感。在水中,graphene纳米片悬浮液的样品也表现出剪切粉,可以解释如下。在较低的剪切速率下,随着纳米板旋转的液体旋转,它们逐渐使它们沿增加剪切的方向对齐,从而产生较小的耐药性,从而降低粘度。当剪切速率足够高时,达到了最大可能的剪切顺序,骨料分解为较小的尺寸,降低粘度[7,25]。[11]还研究了分散在蒸馏水中的石墨烯纳米片的粘度和热导电,并研究了三个有影响力的参数,包括浓度,温度和特定表面积。他们提出了相对粘度作为不同特定表面积,浓度和温度的函数的相关性。
本文研究了由于Jeffrey杂交纳米流体流动而导致的太阳能储能,该流通过多孔介质用于抛物线槽太阳能收集器。在悬浮水基传热液中,还遇到了石墨烯和银纳米颗粒的热疗法和布朗运动的机制。旋转的微生物具有在纳米流体混合物中向上移动的能力,从而增强了纳米颗粒的稳定性和悬浮液中的流体混合。管理方程式的数学建模使用质量,动量,能量,浓度和微生物浓度的保护原理。非相似变量被引入尺寸管理方程式,以获取非量纲的普通微分方程。实施现金和鲤鱼方法来求解非二维方程。还使用Levenberg Marquardt算法为非维度的方程开发了人工神经网络。对应于影响纳米流体流和传热的不同参数的数值发现。观察到热曲线会随着达西和福切氏症参数的升级而增强。和Nusselt数字随着Deborah数字和延迟时间参数的升级而增强。熵生成可以随着Deborah数字和延迟时间参数的增强而降低。太阳能是最好的可再生能源。它可以满足行业和工程应用增长的能源需求。
摘要:热跃层热能存储系统在提高能源密集型行业的能源效率方面起着至关重要的作用。在可用的技术中,由于使用具有成本效益的材料的能力,空气基床系统很有希望。最近,研究中最有趣的填充材料之一是钢铁矿石,这是钢铁行业的副产品。钢炉炉提供负担能力,可用性充足而没有冲突的使用,在高达1000℃的温度下稳定性,与传热液的兼容性以及无毒性。先前的研究表明了有利的嗜热和机械性能。尽管如此,当在许多充电和放电周期中暴露于机械和热应力时,经常被忽视的方面是炉渣颗粒的耐力。在整个热循环过程中,储罐内的炉渣在升高温度下经历了大量载荷,经历了热膨胀和收缩。这种现象会导致单个颗粒的恶化和对储罐结构的潜在损害。但是,由于在相关规模上进行热循环所需的相当长的时间,评估这些系统的扩展性能是具有挑战性的。为了解决这个问题,本文介绍了专门设计的快速测试设备,为15年的运行时间提供了实尺度系统的相应测试结果。