虽然 RDE 已经开发和测试了很多年,但自从 NASA 开始研究其“月球到火星”任务架构以来,该技术就引起了广泛关注。从理论上讲,该发动机技术比传统推进和依赖受控爆炸的类似方法更有效。2022 年夏天,先进推进开发商 In Space LLC 和印第安纳州拉斐特的普渡大学合作,在马歇尔对 RDRE 进行了首次热火测试。
基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。 演示,” M17-6434。 12月1日(2017年)。 •ASTM委员会F42关于添加剂制造技术。 添加剂制造技术的标准术语ASTM标准:F2792-12A。 (2012)。 •Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。 液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。 在2018年联合推进会议上(第4625页)。 •Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。
基于参考文献:•EK,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。•Gradl,P。,Brandsmeier,W。,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。7
基于参考文献: • Gradl, PR、Mireles, O.、Andrews, N。“推进系统增材制造简介。10.13140/RG.2.2.13113.93285 • ASTM 增材制造技术委员会 F42。增材制造技术标准术语 ASTM 标准:F2792-12a。(2012 年)。 • Gradl, PR、Greene, SE、Protz, C.、Bullard, B.、Buzzell, J.、Garcia, C.、Wood, J.、Osborne, R.、Hulka, J. 和 Cooper, KG,2018 年。液体火箭发动机燃烧装置的增材制造:工艺开发和热火测试结果摘要。2018 年联合推进会议(第 4625 页)。 • Ek, K.,“增材制造金属”,理学硕士论文,KTH 皇家理工学院 (2014)。
基于参考文献: • Gradl, PR、Mireles, O.、Andrews, N。“推进系统增材制造简介。10.13140/RG.2.2.13113.93285 • ASTM 增材制造技术委员会 F42。增材制造技术标准术语 ASTM 标准:F2792-12a。(2012 年)。 • Gradl, PR、Greene, SE、Protz, C.、Bullard, B.、Buzzell, J.、Garcia, C.、Wood, J.、Osborne, R.、Hulka, J. 和 Cooper, KG,2018 年。液体火箭发动机燃烧装置的增材制造:工艺开发和热火测试结果摘要。2018 年联合推进会议(第 4625 页)。 • Ek, K.,“增材制造金属”,理学硕士论文,KTH 皇家理工学院 (2014)。
基于参考文献:•Gradl,P.R。,Mireles,O。,Andrews,N。“推进系统添加剂制造的简介。10.13140/rg.2.2.2.13113.93285•ASTM委员会F42关于增材制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。
*不包括所有金属 AM 工艺 基于参考文献: • Gradl, P.、Tinker, D.、Park, A.、Mireles, P.、Garcia, M.、Wilkerson, R.、Mckinney, C. (2022)。“航空航天部件的稳健金属增材制造工艺选择和开发”。材料工程与性能杂志 (JMEP)。评论文章。 • ASTM 增材制造技术委员会 F42。增材制造技术标准术语 ASTM 标准:F2792-12a。(2012)。 • Gradl, PR、Greene, SE、Protz, C.、Bullard, B.、Buzzell, J.、Garcia, C.、Wood, J.、Osborne, R.、Hulka, J. 和 Cooper, KG,2018。液体火箭发动机燃烧装置的增材制造:工艺开发和热火测试结果摘要。参加 2018 年联合推进会议(第 4625 页)。
摘要自2000年代后期以来,国家航空航天管理局(NASA)参与了用于空间应用的金属添加剂制造(AM)的开发和成熟。通过材料表征和测试,标准开发,组成的制造以及对推进开发和飞行应用的注入,重点介绍了对AM过程的理解。除了机械和热物理测试外,NASA成熟的常用航空合金(镍,铜,不锈钢和钢,铝和基于钛的镍,铝和基于钛的钢),除了机械和热物理测试外,还通过详细的AM过程和热处理表征。尽管这些合金在许多推进应用中都被积极使用,但需要使用集成计算材料工程(ICME)(ICME)和高性能应用程序的过程开发进行持续的AM优化合金。针对的应用是液体火箭发动机;先进的推进系统;和高热通量,高压和/或使用可以降解合金(例如氢)的推进剂的空间推进。本文使用激光粉末床融合(L-PBF)和激光粉末定向能量沉积(LP-DED)工艺强调了更常见的AM合金的表征和物理特性。此外,本文讨论了一些正在进行的新型合金开发和使用AM用于这些恶劣环境中的新型合金开发和成熟,例如GRCOP-42,GRCOP-84,NASA HR-1,GRX-810和C-103。这些过程的结果表明,AM可以实现使用ICME优化合金的快速开发和持续的努力,从而产生更高的性能。这些合金进行了建模,基本冶金评估,热处理研究,详细的微观结构表征和机械测试运动。这与直接应用特定的组件制造和热火测试相结合,通过高占用周期测试使技术准备水平(TRL)的提高能够提高。此处介绍了这些新型AM启用合金和正在加工的开发,包括冶金和机械性能研究。还讨论了这些合金的平行组件开发以及热火测试和未来发展的最新进步。Keywords : Additive Manufacturing, Propulsion, Rockets, Alloy Development, GRCop-42, GRCop-84, Refractory, GRX-810, NASA HR-1, L-PBF, LP-DED, DED, Laser Powder Bed Fusion, Laser Powder Directed Energy Deposition Acronyms/Abbreviations AM Additive Manufacturing (AM), Carbide Dispersion Strengthened (CDS), Directed能量沉积(DED),家用或异物碎片(DOD或FOD),氢环境封闭(HEE),氢含水剂指数(HEI),热等速度压迫(HIP),集成计算材料工程(ICME),低循环疲劳(LCF),LCF),Laser粉末床融合(LPBF),Laser fordect(Laseredect),Laser dive-dive-dive-dirotect(Laser dirotect)(LASEREDEDED)
“今年对我们国家和世界来说都是艰难的一年,在很多层面上都是如此。尽管面临许多挑战,但我很自豪能成为这个树立了积极榜样并激励全球社会的机构的一员。克服困难,NASA 在开发阿尔忒弥斯计划首次任务的系统方面取得了进展——成功完成了猎户座飞船的系统测试,包括结构测试件和空间环境测试,以验证飞船是否已为阿尔忒弥斯一号做好准备。该机构还完成了“像飞行一样测试”SLS 核心阶段绿色运行测试的先决条件系统测试案例,这是为阿尔忒弥斯一号核心阶段扫清障碍的最后一次热火测试。我们已经选定合作伙伴与我们一起开发载人着陆系统;我们与商业伙伴合作进行试飞,并自 2011 年以来首次成功将美国人从美国本土送往国际空间站;我们还将毅力号探测器发射到火星,并于 2 月着陆。通过所有这些,NESC 为 NASA 的许多成就提供了关键支持。通过专业知识和指导、严谨的技术卓越性以及降低宇航员风险的决心,NESC 一直致力于提供关键的独立技术评估以支持 NASA 计划。”
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。