UDC 66.045.1 Uliev L.M.,瓦西里耶夫 M.一个。PINCH — 焦化厂焦化产品加工工艺的集成简介。能源价格上涨迫使依赖能源的国家实现能源供应多样化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每1美元0.89千克常规燃料。美国。这一数字目前是欧洲国家中最高的。具体来说,波兰的GDP能源强度为0.34 kg/t。吨 / 美元。美国、德国 – 0.26、英国 – 0.23 [1].降低化工、冶金等行业的能源消耗尤为重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从直接焦炉煤气中用有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),其含量为(80– 90%!”[2]。先前已从所研究的工艺中提取了数据,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了回收能力为 17.44 MW,热电厂容量为 34.78 兆瓦,冷电厂容量为 33.5 兆瓦 [3]。本文介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在化学[5–6]、石油化工[6–9]和焦炭化工[10–13]领域的研究中证明了其有效性。行业。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最佳重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序 [14] 设计的给定值与最小温差的成本依赖关系如图所示(图1).为了经济地最佳地整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。每 1000 立方米 [15],考虑到每年有 8000 个工作小时,热力设施的价格将为 172 美元。美国每千瓦每年。制冷设施的价格为 24.5 美元。美国每千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定:
UDC 66.045.1 Uliev L. M.,瓦西里耶夫 M.答:焦化厂 焦化 产品 加工 过程 的 夹点 集成 简介 . 能源价格上涨迫使能源依赖型国家实现能源供应多元化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每美元0.89千克常规燃料。美国。这一数字目前在欧洲国家中最高。具体来说,波兰的GDP能源强度为0.34千克力。吨 / 美元。美国、德国——0.26、英国——0.23 [1]。降低化工、冶金等行业的能源消耗尤其重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从焦炉煤气中通过有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),含量为(80–90)%。[2]。对所研究过程的数据提取工作已提前完成,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了 17.44 MW 的回收能力以及热电厂(34.78 MW)和冷电厂(33.5 MW)的容量 [3]。介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在先前的化学[5–6]、石化[6–9]和焦化[10–13]行业中的研究中证明了其有效性。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最优重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序[14]设计的给定值与最小温差的成本依赖关系如图1所示。为了经济地优化整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。假设每年有 8000 个工作小时,那么每 1000 立方米 [15] 热能公用事业的价格将为 - 172 美元。美国每 1 千瓦每年。制冷公用事业的费用为 24.5 美元。美国每 1 千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定:
UDC 66.045.1 Uliev L. M.,瓦西里耶夫 M.答:焦化厂 焦化 产品 加工 过程 的 夹点 集成 简介 . 能源价格上涨迫使能源依赖型国家实现能源供应多元化,并加速实施提高工业生产能源效率的计划。根据2006年的结果,乌克兰GDP的能源强度为每美元0.89千克常规燃料。美国。这一数字目前在欧洲国家中最高。具体来说,波兰的GDP能源强度为0.34千克力。吨 / 美元。美国、德国——0.26、英国——0.23 [1]。降低化工、冶金等行业的能源消耗尤其重要,因为燃料价格是这些行业生产成本的主要部分。本文研究了独联体国家典型的苯蒸馏和煤焦油蒸馏的工艺流程。粗苯是从焦炉煤气中通过有机吸收剂吸收提取的,是一种复杂的化学(芳香)化合物混合物,其中主要成分是苯烃(苯及其同系物),含量为(80–90)%。[2]。对所研究过程的数据提取工作已提前完成,针对现有的 ∆ T min(36 o C、20 o C 和 302 o C)构建了复合曲线,确定了 17.44 MW 的回收能力以及热电厂(34.78 MW)和冷电厂(33.5 MW)的容量 [3]。介绍了两个苯蒸馏车间和一个煤焦油蒸馏车间的改造过程。热能整合。为了实施重建项目,选择了夹点分析方法,该方法已在先前的化学[5–6]、石化[6–9]和焦化[10–13]行业中的研究中证明了其有效性。该方法的优点是有可能实现项目的最小折现成本,这是由经济学和热力学定律决定的[4]。最优重建方案的选择是通过实现 Δ T min 的值来实现的,在该值下减少的成本最小。该值是通过能源现值和资本成本现值之间的折衷实现的。使用“Hint”程序[14]设计的给定值与最小温差的成本依赖关系如图1所示。为了经济地优化整合所考虑的过程,有必要确定资本和特定成本的主要值,这些值会显著影响项目的现值。焦炉煤气用作加热热设施的燃料,其成本为107.5美元。假设每年有 8000 个工作小时,那么每 1000 立方米 [15] 热能公用事业的价格将为 - 172 美元。美国每 1 千瓦每年。制冷公用事业的费用为 24.5 美元。美国每 1 千瓦每年。为了确定最低降低成本,我们将采用以下热交换设备的成本特征。热交换器的成本由表达式(1)确定:
从任意观点以及适应不断变化的拓扑结构的表面重构。涉及人类或机器人相互作用与物体的场景需要动态适应分裂,合并或变形的表面。热热,下游应用,例如视觉效果和无标记运动捕获,从不依赖模板的情况下跟踪持久区域的能力显着。因此,方法必须有效地处理这些拓扑更改,以确保高质量的渲染和准确的重建,同时还要维护对现有表面的同意跟踪。经典方法主要依赖于网格和tex曲线图,这些图提供了合理的外观,但重大取决于网格分辨率。他们常常无法准确地确定细节和观察依赖性效果。al-尽管这些网格表示可以进行一定程度的跟踪,但它们努力处理重大的拓扑变化,需要新的关键帧以适应ma-jor变换。神经辐射场的出现(NERF)[28]在静态[1,46]和dy-namic场景[17,30]的外观和新型综合方面有了显着改善。使用Marting Cubes [37,44]可以从隐式签名的距离功能(SDF)得出表面,但除非使用了不足的模板,否则它们缺乏一致的跟踪。最近,出现了3D高斯脱落(3DGS)[20],具有明确的纹理代表,在外观上与NERF竞争,同时实现了更有效的效果。这些高斯人与网格面一起移动,以表示移动和变形的对象。其明确表示有助于跟踪,并为此开发了几种技术[26,50]。然而,准确的动态表面重建仍然是一个挑战,并且在现有表面的跟踪与引入新的表面保持平衡被证明很困难。为了应对这些挑战,我们提出了GSTAR,该方法能够重建光真逼真的外观和准确的表面几何形状,并随着拓扑变化而保持一致的跟踪。GSTAR利用多视图盖,并将网眼与绑定的高斯人结合在一起,与高斯表面相结合。当新的表面变得可见时,新的高斯人会产生,并且网格拓扑更新。适应性网格提供了时间一致,准确的几何形状,而高斯人则带来了逼真的外观。这个问题很困难,因为总会有一个折扣。可以通过固定的托架或模板[24,50]更轻松地跟踪的方法倾向于在新的姿势或变形下降低外观和几何形状的质量。相反,过度拟合静态场景的方法[8,14,16]缺乏时间一致性或错过新的框架详细信息。GSTAR通过尽可能多地跟踪面孔来解决这一权衡
流体主要来源和化学物理过程控制了来自东部科迪勒拉,副安迪斯群和圣巴巴拉(北阿根廷胡尤省)的热泉水的水和气体化学,以提供这些区域中地球潜能的初步评估的信息。在东部山脉(雷耶斯)和西方次数范围(aguas calientes)的一部分中的热表现由浅水含水层喂食,与季元岩石相互作用,与Quaternary-Neogene Rocks相互作用,以及上新世新世的上部和上新近新世代的中部地区的上部(ORAN组)(ORAN),何时对2500 MIRSERIEC WAIRESERIEN WATERIES RECENE PATERIS ASERE SERE SERE SERE SERE SERPERISE; 爬坡道。 不同的是,在supean范围内的ElJordán热弹簧被托有盐塔基高度和骨折的地层内的水热含水层(Yacoraite形成)喂养,并由Sierra de Calilegua(〜1500 m A.S.S.L.)的Meteoric Water充电。 后者也是La Quinta地热水域的充值区域,但这些区域已在较高的高度(> 2500 m a.s.l.)在东部山脉(雷耶斯)和西方次数范围(aguas calientes)的一部分中的热表现由浅水含水层喂食,与季元岩石相互作用,与Quaternary-Neogene Rocks相互作用,以及上新世新世的上部和上新近新世代的中部地区的上部(ORAN组)(ORAN),何时对2500 MIRSERIEC WAIRESERIEN WATERIES RECENE PATERIS ASERE SERE SERE SERE SERE SERPERISE; 爬坡道。不同的是,在supean范围内的ElJordán热弹簧被托有盐塔基高度和骨折的地层内的水热含水层(Yacoraite形成)喂养,并由Sierra de Calilegua(〜1500 m A.S.S.L.)的Meteoric Water充电。后者也是La Quinta地热水域的充值区域,但这些区域已在较高的高度(> 2500 m a.s.l.)在范围内。从圣塔芭芭拉系统(Caimancito,el palmar和Siete aguas)中喂养其他热弹簧的热液储层,由Zapla Ranges和Santa Barbara Hill的流星水充电,位于<2500 m A.S.L.从所有研究的省份中溶解和冒泡的气体与Co 2 - 和CH 4-富含富含的地壳相关,这两种热过程内发生的两个热过程和微生物活性在相对较低的deptth中发生,而微生物活性则相对较低,低于可忽略不计的壁炉贡献,如3 He/ 4 He Awhe Awea He Awea He Aweal值指示。高-TD(> 16,000 mg/l)Na + -cl -cl -la Quinta热弹簧是通过与盐塔组的蒸发矿床相互作用而产生的石膏堆积的Anta形成。流动储层供进山冠热弹簧显示出最高的估计温度(> 200°C),考虑到圣塔芭芭拉系统(Santa Barbara System)(〜2000 m)的萨尔塔(Salta)组的深度,支持该想法,由以前的作者提出,对于这个区域的热热梯度,该区域是对未来的预定范围的无态度梯度的建议。
1。简介可再生能源系统中包括各种技术,这些技术旨在从可再生自然资源(包括阳光,风,水和地热热)中捕获能量。这些系统与化石燃料不同,化石燃料的供应有限,并且严重加剧了环境降解和气候变化。全球措施减轻气候变化,减少温室气体排放和实现可持续发展的影响必须包括向可再生能源的过渡。至关重要的是在可再生能源系统的主题中定义重要词,以理解它。通过不断补充自然过程产生的能量称为可再生能源。这涵盖了来自生物质,地热,水力发电,风和太阳能来源的能量。光伏电池或太阳热收集器用于太阳能中从太阳中提取能量。使用风力涡轮机,风能将风的动能转化为电能。利用流动水的能量使用水力发电来产生电力。虽然地热能利用地球核心的热量,但生物量能量是由有机材料产生的。值得注意的监管变化和相当大的技术发展已经表征了可再生能源系统的增长。1970年代的石油危机引起了20世纪中叶对替代能源的兴趣。大多数早期可再生能源解决方案都是昂贵且实验性的。在风能方面也取得了重大进展。然而,数十年来的研发已经使成本效益和效率取得了重大进步。例如,在过去的十年中,光伏电池效率已大大提高,太阳能电池板的成本下降了80%以上。当代风力涡轮机能够以有竞争力的成本产生能力,并且效率更高。此外,小型水电系统的进步最近使水力发电成为可靠的可再生能源,更容易获得。从直接燃烧方法到复杂的生物燃料生产策略,生物量能量经历了多样化。通过改进的地热系统(EGS)技术,已经实现了从更深且更渗透的地热资源中使用的热量,尽管其地理位置限制了地热能。鉴于当今世界面临的环境问题,不可强调可再生能源的重要性。 紧迫需要对抗气候变化的需求是开关后面的主要驱动力。 二氧化碳和其他温室气体因化石燃料的燃烧而释放出大气中的热量,并引起全球变暖。 相比之下,当使用可再生能源时,它们会发出很少或没有温室气体。 除了其环境利益外,可再生能源还具有巨大的经济利益。 可再生能源系统的制造,安装和维护雇用数百万人,使可再生能源部门成为主要的就业创造者。鉴于当今世界面临的环境问题,不可强调可再生能源的重要性。紧迫需要对抗气候变化的需求是开关后面的主要驱动力。二氧化碳和其他温室气体因化石燃料的燃烧而释放出大气中的热量,并引起全球变暖。相比之下,当使用可再生能源时,它们会发出很少或没有温室气体。除了其环境利益外,可再生能源还具有巨大的经济利益。可再生能源系统的制造,安装和维护雇用数百万人,使可再生能源部门成为主要的就业创造者。另外,通过多样化的能源供应和降低
