立面是控制建筑物太阳能流并影响其能量平衡和环境影响的主要接口。最近,已经探索了半透明聚合物的大规模3D打印(3DP),作为一种制造具有定制特性和功能的立面组件的技术。透射率对于建筑外墙至关重要,因为对太阳辐射的响应对于获得舒适感至关重要,并且会极大地影响电力和冷却需求。但是,仍不清楚3DP参数如何影响半透明聚合物的光学性质。本研究建立了一个实验程序,将PETG组件的光学特性与设计和3DP参数相关联。观察到打印参数控制层沉积,该沉积控制层中的内部光散射和整体光传输。此外,层分辨率决定角度依赖性属性。表明,可以调整打印参数以获得量身定制的光学特性,从高正常透明度(≈90%)到透明度(≈60%),并且具有一定范围的雾霾水平(≈55-97%)。这些发现为大规模3DP的定制立面提供了机会,可以有选择地接纳或阻止太阳辐射,并提供空间的均匀日光。在建筑部门脱碳的背景下,这种组件具有减少排放的巨大潜力,同时确保乘员舒适。
热能存储引起了广泛关注,相变材料 (PCM) 因其有益的物理和化学特性而被广泛使用。虽然氮化物基盐 PCM 通常用于热能存储,但其潜热存储能力仍然有限。这项研究通过加入单层氮化硼来增强氮化物基盐用于热能存储的性能,从而提高热导率和潜热存储能力。Sn₃N₂-LiNO₃-NaCl/单层氮化硼的新型混合物具有高比热容、高潜热值和低相变温度的特点,使其成为热能存储的绝佳候选材料。在 PCM 中添加单层氮化硼可显著提高热导率,将其从 1.468 W/m·K 提高到 5.543 W/m·K。值得注意的是,这些氮化物基三元盐不会相互发生化学反应;它们的相互作用纯粹通过混合来改善热性能。该新型共混物还表现出了良好的热稳定性,在600℃时分解率仅为0.5%,熔化温度为150℃,凝固温度为130℃。三元盐的比热容达到最大值3.5 J/g·℃,表明热流速率更高,充电和放电速率也更高。复合PCM(CPCM)的储热能力在600℃时为600 kJ/kg,这些PCM的组合延长了储热时间。三元盐表现出优异的热稳定性,在100次循环中保持性能而质量没有显著减少。此外,三元盐向单层孔隙中的扩散进一步增强了其有效性。使用基于Anaconda的Jupyter Notebook和Python进行模拟分析。
抽象具有适当的孔隙率,高电导率和良好的热稳定性的锂离子电池中分离器的特性。分离器中的热稳定性是电池使用中必须考虑的重要特征。分离器是锂离子电池中正极和负电极之间分离的一个组成部分,并且必须能够承受高温而不会遭受降级或安全危害。本研究的目的是将PVA/GO分离器的热性分析为锂离子电池分离器。PVA纳米纤维合成使用电源方法,PVA纳米纤维的结果将浸入GO溶液中,然后将以DTA-TGA来表征结果,以确定热性能。结果表明,PVA/GO分离器的热稳定性在小于317.35°C的温度下具有热稳定性,并且在317.35°C的温度下分解。在这项研究中,可以得出结论,PVA/GO分离器已达到一半的热稳定性。
近年来,由于电动汽车,可再生能源和其他相关场的快速开发,锂离子电池已被广泛用作重要的储能装置。但是,锂离子电池在使用过程中产生大量热量。此外,高温可以严重影响电池的性能和安全性。基于此背景,本论文旨在研究锂离子电池的热特性及其在不同散热场景下的温度分布,并提出有效的热去除方案。通过审查相关的研究和基本原理,建立了数值模型,并为锂离子电池组进行了数值模拟。对于空冷的散热条件,提出了四个不同的入口和出口布局方案,并评估了散热效果。另外,探索了不同参数对冷却效果的影响。
摘要:电池设计工作通常优先考虑提高活性材料的能量密度及其利用率。然而,优化电池单元和电池组级别的热管理系统也是实现与任务相关的电池设计的关键。电池热管理系统负责管理电池单元的热分布,对于平衡电池性能和寿命至关重要。设计这样的系统需要考虑电池单元和电池组内的众多热源。本文总结了使用等温电池量热法在几种商用锂离子电池单元中观察到的发热特性。主要重点是评估温度、C 速率和形成周期的影响。此外,模块级特性显示了模块互连产生的大量额外热量。在每个级别表征热特征有助于在设计、生产和特性阶段为制造提供信息,否则在整个电池组级别可能无法考虑到这些信息。对 5 kWh 电池组的进一步测试表明,由于冷却布置效率低下,可能会出现相当大的温度不均匀性。为了缓解这种挑战,提出了一种结合热特性和多领域建模的方法,提供了一种无需构建昂贵的模块原型的解决方案。
计算流体动力(CFD)和机器学习方法用于研究NASA型NACA 0012的热传递。已经开发了几种不同的模型,以检查层流,晶状体流量和Allmaras流对NACA 0012机翼在不同的空气动力学条件下的影响。在本文中,针对多孔模式和非孔模式的不同机翼模式讨论了高温下的温度条件。特定参数包括11.36 x 10-10 m 2的渗透率,孔隙率为0.64,惯性系数为0.37,温度范围为200 k和400K。该研究表明,温度升高可以显着增加提升到拖拉。另外,采用多孔状态和温度差异进一步有助于增强电力到拖拉系数。在调整温度时,神经网络还可以成功预测结果,尤其是在有更多情况的情况下。尽管如此,本研究使用Smoter模型评估了系统的准确性。已显示测试情况最佳性能验证的MSE,MAE和R分别为0.000314、0.0008和0.998960,在k = 3。然而,研究表明,时期值大于2000,增加了计算时间和成本而不提高准确性。这表明SMOTER模型可用于准确对测试案例进行分类;但是,对于最佳性能,不需要更高的时期值。
摘要:本文概述了锂离子电池系统中精确热分析的重要性。它强调了对额外研究的要求,以创建有效的方法来建模和控制热性能,并最终是提高锂离子电池的安全性和性能。由于这些能量存储系统内的固有热量产生,温度调节与锂离子电池之间的相互作用至关重要。对锂离子电池所表现出的热行为的深刻理解,以及针对电池组的先进温度控制策略的实施,仍然是一个关键的追求。利用量身定制的模型来剖析锂离子电池的热动力学显着,从而在广泛的操作场景中增强了我们对其热管理的理解。这项全面的综述系统地探讨了采用模拟和模型来揭示复杂的热特性,行为细微差别以及与锂离子电池相关的潜在失控事件的多样化研究。本综述的主要目的是强调使用的表征方法的有效性,并强调关键参数(规定的当前速率和温度)在塑造热动力学中的关键参数。值得注意的是,与直接更改锂离子电池设计本身相比,热设计系统的增强通常更可行。因此,该热审查主要集中在热系统的领域。合成的见解提供了研究发现的全景概述,并有更深入的了解,需要咨询特定已发表的研究及其相应的建模努力。
摘要:由于能源管理策略(EMS)的性能对于插电式混合电动总线(PHEB)以有效的方式运作至关重要。考虑到PHEB的电池热特性,近端策略优化(PPO)的多目标EMS旨在提高车辆节能性能,同时确保电池电量状态(SOC)和合理范围内的温度。由于这三个目标相互矛盾,因此通过智能调整培训过程中的权重来实现多个目标之间的最佳权衡。与原始的基于PPO的EMS相比,没有考虑电池热动力学,模拟结果证明了拟议策略在电池热管理中的有效性。结果表明,与其他基于RL的EMS相比,提出的策略可以获得最小能耗,最快的计算速度和最低的电池温度。关于动态编程(DP)作为基准,基于PPO的EMS可以实现类似的燃油经济性和出色的计算效率。此外,在UDD,WVUSUB和实际驾驶周期中确定了所提出方法的适应性和鲁棒性。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。