Arai Yasuyuki 1),Ohiki Marie 2,17,18),Ota Shuichi 3),Tanaka Masatsugu 4),Imada Kazunori 5),Fukuda Takahiro 6),Katayama Yuta 7),Katayama Yuta 7),Kanda Yoshiko) TOYOSHIMA TAKANORI 11),ISHIDA TAKASHI 12),UCHIDA HIROKI 12),BABA RYUICHI 12),UNO KEI 12),TAKAMI AKIYOSHI 13),ONUMA TAKAAKI 14),YANAGIDA MASAMITSU 15),YANAGIDA MASAMITSU 15),ATSUTA YUKO 2,17)
委派Agurotech B.V. ............................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................................................................................................................................................
本出版物是ICTAC工作组“热化学” 1期间1997年至1998年期间努力的结果。它涉及用于量热法和差异疗法分析的参考材料(缩写形式:RM)。它代表了IUPAC致命的“物理化学测量和标准”制作的两个先前的文档的更新版本:第一个发表于1974年的Pure and Applied Chemistry [1],第二本书在书籍中,标题为“重新认可的参考材料,用于实现物理学属性的实现” [2]。量热法和差分热分析与涉及物理,化学和生物学过程的广泛科学和技术研究领域相关。量热法通常会产生高度可再现的结果,但是由于测量系统的校准故障,可能是无法降低的。校准是每项热分析研究的基本要求。需要在测量仪器指示的值与正确值之间建立定义定义的关系。通过量化产生的
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。
