插头或插孔端接 - AC 型 AC 型热电偶配备插头或插孔端接,可快速连接或断开。除了节省时间之外,这种热电偶款式还具有易于使用的优势,即使没有经验的人员也可以轻松使用。此外,热电偶按照 ASTM E 230 规范进行颜色编码,因此您可以轻松确定校准。除 ASTM E 230 R 型和 S 型外,所有 AC 型热电偶的引脚和触点都采用与热电偶相同的合金,因此准确度更高。这种技术可消除由于连接器上的温度梯度而导致的误差。R 型和 S 型连接器采用补偿合金。特点 • 插头和插孔易于连接和断开,为您节省时间 • ASTM 颜色编码连接器可快速识别热电偶校准 • 微型连接器,可提供直径最大 0.125 英寸(3.0 毫米)的热电偶,可用于空间狭小的位置。微型插头允许快速连接到便携式仪器 • 匹配的热电偶合金提供更高的精度 • 适配器确保连接器牢固地安装到护套上,防止连接器转动或扭曲
热电偶是高温下最常用的温度计之一。截至今天,只有几种类型的热电偶可以承受以上的温度以上的温度,但是在这些高温下,它们通常的温度测量不确定性约为1%。超过1600℃温度跨度,大多数高温热电偶倾向于在测量中漂移,从而导致其输出错误的读取实际温度的故障且不准确。本论文通过组合两个不同的碳纤维的组合探讨了碳纤维作为用于热电偶的材料。聚丙烯腈(PAN)和人造丝纤维被用至200℃的温度,在其中记录了热电偶的输出电压。该研究显示了在较低温度下使用市售的碳纤维,用于这种类型的热电偶的电动力的有前途且稳定的线性输出。在K型和S型的常用热电偶之间进行了比较,结果表明,碳热电偶在25℃时具有K或S型热电偶的热电效率的21%。对于较高温度下的功能,已经通过文献研究了类似的石墨材料,并发现在2000年以上的较高温度下,热电学稳定性的潜在增加,这表明基于碳的热电偶非常适合高温测量。
摘要 矿物绝缘金属护套 (MIMS) 贱金属热电偶在其使用寿命内会因高温使用和冶金变化而发生热电漂移,从而引起虚假测量误差。CCPI Europe Limited 和剑桥大学设计了一种带有额外内护套的 MIMS 热电偶,以保护热电元件免受导致热电漂移的影响。六个不同的国家计量机构 (NMI) 使用两种不同的测试方案评估了这些双壁热电偶以及传统的 N 型和 K 型热电偶的性能:1200 ◦ C 下的恒温测试和 300 ◦ C 和 1150 ◦ C 之间的热循环测试。调查表明,在两种测试方案中,与传统热电偶相比,N 型双壁热电偶的热电漂移均显着降低约三倍。 K型双壁热电偶和传统K型热电偶在恒温试验中没有显著差异,K型双壁热电偶在热循环试验中表现出比传统热电偶更大的漂移,但传统K型热电偶的坚固性不如双壁K型热电偶。本文给出的结果代表了对双壁热电偶和传统热电偶的热电稳定性的公正评估,可为潜在的u提供保证
所有热电偶均应至少25.4毫米[1英寸]远离任何墙壁或舱壁。应在Ager内部的正常工作区域均匀分布热电偶,并应记录位置。将十个热电偶用于较大的老年人,八个较小的老年人应使用。例如,如果Ager使用五个小抽屉,则在抽屉前半半的热电偶就足够了。如果不使用抽屉,则应在通常放置零件的区域周围分布热电偶。
ProHeat 35 感应电源配备内置温度控制器。控制器提供手动编程或基于温度的编程。手动编程提供设置功率级别和持续时间。这在预热应用中非常有用,在预热应用中,将零件加热到一定温度并移除加热装置。基于温度的编程提供了开发预热、氢气烘烤或应力释放程序的能力。为加热提供四个控制热电偶输入和两个监测热电偶输入。控制器读取控制热电偶,根据最热的热电偶调节热量上升,根据最冷的热电偶调节冷却。此功能有助于确保在过程中不会违反加热和冷却速率。控制器设计为易于理解和编程。
多个垂直竖立的热电微柱作为热电对和吸收层的机械支撑,吸收层吸收辐射能产生温差,驱动由p型和n型微柱组成的热电偶输出电压,多个热电偶可以串联,以改善信号输出。