建立肽序列与原纤维形成之间的基本关系对于理解蛋白质错误折叠过程和指导生物材料设计至关重要。在这里,我们将全原子分子动力学(MD)模拟与人工intel-ligence(AI)相结合,以研究短肽序列排列的细微变化如何影响其形成原纤维的倾向。我们的结果表明,疏水残基的分布和电荷簇的分布很小,可以显着影响成核速率和跨β结构的稳定性。为了快速扩展此分析,我们开发了一个主动学习 - 增强的框架 - 用于分子动力学的机器学习(ML4MD),从而根据MD衍生的聚合数据迭代地完善了其预测。ML4MD有效筛选了许多肽排列,并指导发现先前未识别的原纤维式序列,从而在接收器操作特征(ROC)曲线(AUC)下达到0.939的接收器下方。总体而言,ML4MD通过将详细的原子模拟与快速和高敏锐的ML预测整合在一起,简化了淀粉样蛋白样肽的合理设计。
电源单元的输入来自交流电网,范围为 85 V AC ~ 265 V AC。保险丝 F1 直接连接到输入线,以保护系统,防止因任何故障而导致过大电流进入系统电路。接下来是压敏电阻 VAR1,它连接在输入端,用于在线路浪涌瞬变期间吸收过多的能量。桥式整流器 BR1 将交流输入整流为直流电压,由大电容 C1 和 C2 滤波。电阻 NTC1 不仅可以降低启动时的浪涌电流,还可以帮助降低线路浪涌瞬变期间大电容 C1 和 C2 上的电压升高。电感器 L1 和电容器 C1 和 C2 形成 π 滤波器以衰减 EMI 噪声。
在处理RS-485系统中的激发瞬变时,大多数设计人员都必须使用某种类型的保护电路,无论是离散的(最常见)还是集成在收发器本身中。此保护电路对于在系统设计中添加一层鲁棒性至关重要,以在严格的工作条件和/或高压瞬变中生存。保护不仅需要能够将大量电流朝向系统地面,而且还需要在收发器的绝对最高和最低等级内保持电压水平。rs-485设备与电涌保护的设备,例如Ti的新型高架电压电压电压保护的THVD24X9X家族或经典涌现的THVD14X9家族提供的新型THVD2419和THVD2429,为实施激增的RS-485提供了多个更简单的解决方案。
虽然对海洋二氧化碳去除(MCDR)的研究扩大了速度,但对单个MCDR选项的风险和好处的重要未知数仍然存在。本文分析了对MCDR的专家理解的假设和期望,重点是对这一新兴气候行动领域负责任治理的核心问题。利用了与参与MCDR研究项目的专家进行学术和企业家精神的访谈,我们重点介绍了四个主题紧张关系,这些主题紧张局势使他们的思维定向,但在科学和技术评估中通常是未陈述或隐含的:(1)“自然性”作为MCDR方法评估的标准的相关性; (2)通过循证建设的替代范式来加速研发活动的需要; (3)MCDR作为一种废物管理形式的框架,反过来又将产生新的(目前知之甚少)的环境污染物形式; (4)对包容性治理的承诺,在确定MCDR干预措施中的特定利益相关者或选民方面的困难。尽管对这四个问题的专家共识不太可能,但我们建议确保考虑这些主题的方法丰富有关新型MCDR能力的负责发展的辩论。
摘要 强太赫兹 (THz) 电场和磁瞬变开辟了科学和应用的新视野。我们回顾了实现具有极端场强的亚周期 THz 脉冲最有希望的方法。在双色中红外和远红外超短激光脉冲的非线性传播过程中,会产生长而粗的等离子体串,其中强光电流会导致强烈的 THz 瞬变。相应的 THz 电场和磁场强度分别可能达到千兆伏每厘米和千特斯拉的水平。这些 THz 场的强度使极端非线性光学和相对论物理学成为可能。我们从光物质与中红外和远红外超短激光脉冲相互作用的微观物理过程、这些激光场非线性传播的理论和数值进展以及迄今为止最重要的实验演示开始,进行了全面的回顾。
– 如何确保电网形成转换器之间的 N-1? – 需要什么样的控制来保持稳定性以应对更快的瞬变? – 需要新的模拟工具(基于 RMS 的工具,例如标准 Powerfactory 或 PSS/E,不足以捕捉稳定性)
用于模拟热平衡量子多体系统的可扩展量子算法对于预测有限温度下量子物质的性质非常重要。在这里,我们描述并测试了最小纠缠典型热态 (METTS) 算法的量子计算版本,我们采用自适应变分方法来执行所需的量子虚时间演化。我们将该算法命名为 AVQMETTS,它动态生成紧凑且针对特定问题的量子电路,适用于嘈杂的中尺度量子 (NISQ) 硬件。我们在状态向量模拟器上对 AVQMETTS 进行基准测试,并对一维和二维中的可积和不可积量子自旋模型进行热能计算,并展示了电路复杂性的近似线性系统尺寸缩放。我们进一步绘制了二维横向场 Ising 模型的有限温度相变线。最后,我们使用现象学噪声模型研究噪声对 AVQMETTS 计算的影响。
摘要 - IGBT在各种电力电子应用中扮演至关重要的角色,要求长时间的可靠性。了解其故障机制对于制造商和工程师至关重要。这项研究通过将IGBT降解(尤其是死亡氧化物污染和栅极氧化物污染)与进行的电磁(EM)扰动相关联,以解决差距。使用功率循环系统在600V,16A IGBT上进行加速衰老,揭示了静态和动态参数的显着变化。切换瞬变显示出归因于经验丰富的降解的转弯速度放缓。实验设置证明了降解,切换瞬变(尤其是收集器电流(I C)关闭)之间的直接联系,并减少了执行的EM扰动。关键字 - IGBT,模具降解,闸门氧化降解,加速衰老,IGBTS的信号光谱分析,进行了EM发射。
表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
第二种方法是使用集成解决方案,将数字隔离器和 RS-485 收发器整合在一个封装中。ISO1410 将 ISO7741 的核心隔离技术和 THVD1410 收发器整合在一个封装中。核心隔离技术能够实现 1500 Vpk 连续工作电压、增强型 5 kVrms 隔离额定值和 100 kV/us 典型共模瞬变抗扰度 (CMTI)。集成收发器在总线上提供高抗噪性,符合 Profibus 标准,具有 16 kV IEC 静电放电 (ESD) 和 4 kV IEC 电气快速瞬变 (EFT),即使在工厂车间等嘈杂环境中也能确保可靠通信。与分立解决方案相比,ISO1410 具有额外的优势,即逻辑侧电源更宽,支持 1.71 V 至 5.5 V 以启用较低逻辑电平 MCU,总线侧电源支持 3 V 至 5.5 V。
