Sarawut Sirikasemsuk,1个Ponthep Vengsungnle,2 Smith Eiamsa-Ard 3和Paisarn Naphon 4,*摘要电池模块的热管理在其一生,性能,性能和安全风险中起着至关重要的作用。超载或外部热量会导致热失控。在高操作条件下,电池内部的电解质蒸发并产生较高的压力,导致电解质分解,泄漏,点燃和爆炸。使用湍流混合物,考虑了电池通过电池壳的流动的锯齿形流动的热行为。计算域包含十二个棱镜Lifepo 4电池电池,并具有四个冷却流夹克配置。从比较过程中达成了合理的协议。随着工作流体和较高浓度,TIO 2纳米流体和Fe 3 O 4的出口冷却剂温度高于水的高度,可提高去除热量能力。反向Zigzag引导流量降低了电池温度。电池模块的最高温度梯度分别为5.00 O C,4.60 O C,4.53 O C,3.41 O C和1.85 O C,分别为I,II(a),II(a),II(b),III和IV。因此,这种冷却系统可能是设计电池模块内部区域的冷却系统的替代方法,尤其是大型模块。
电池热管理系统(BTM)的控制对于在炎热天气下电动汽车(EV)的热安全性,能源效率和耐用性至关重要。为了解决电池冷却优化问题,本文利用动态编程(DP)制定基于在线规则的控制策略。首先,建立了LIFEPO 4电池组的电热模型。在不同的速度轮廓和温度下提出了面向控制的BTMS模型。然后在DP框架中,将包括电池老化成本和冷却引起的电力成本组成的成本函数最小化,以获得最佳的压缩机功率。通过确定三个规则“快速冷却,缓慢冷却和温度维度维护”,这是一种基于规则的近乎基于规则的冷却策略,它使用尽可能多的再生能量来冷却电池组,以进行在线执行。仿真结果表明,在不同的操作条件下,提出的在线策略可以大大改善驾驶经济并减少电池降解,与离线DP相比,电池损失差异不足2.18%。最终提供了有关不同实际情况下电池冷却的建议。
机械工程系1,2,3,4,5 GMR理工研究所,拉贾姆,安得拉邦,印度安得拉邦摘要:越来越多的电动汽车(EV)作为传统车辆的可持续替代方案,强调了有效电池热管理的重要性。锂离子电池(通常在电动汽车中使用)提供了诸如快速充电时间和效率之类的优点,但容易过热,影响安全性和耐用性。该项目旨在使用被动和主动冷却方法开发适合电池热管理的模型,以控制和调节安全范围内电池的温度。实施先进的热管理系统可增强电池性能,寿命和安全性,从而促进更广泛的电动汽车采用,并为更清洁,更绿色的运输未来做出贡献。关键字:电动汽车
Sheena S. S. S. S. S. S. S. S. S. S. S. Sheena S. S.工程政府理工学院,Kalamassery,683104,Ernakulam,喀拉拉邦摘要:由于与常规化石燃料汽车及其增加的能源需求相关的环境问题,电动汽车的使用引起了人们的关注。电池在充电和放电时产生的热量以及高操作温度会对电池的寿命产生不利影响,并导致热失控。电池热管理系统(BTM)从根本上需要确保电池安全运行并延长其寿命。已经开发了许多BTMS种类,包括使用空气冷却,液体冷却,基于PCM的冷却,热管,热电冷却等的BTMS类型。混合BTM(HBTMS)的开发结合了现在使用的主动和被动系统,这是由于每种类型都具有不同优势和限制的事实提示。当前的研究检查了几种混合BTMS配置,并将它们与现有BTMS进行了比较。研究集中在高排放率环境下采用HBTM的优势。它对具有液体冷却的PCM和PCMS中的性能影响参数的影响提供了批判性分析,以及将来开发HBTMS的此类研究范围。索引条款 - 电动汽车,锂离子电池,热管理。
1. Pachghare PR Nagvase SY 影响闭环脉动热管功能的参数:综述。工程科学研究杂志 ISSN 2278 – 9472 第 2(1) 卷,35-39,一月 (2013)。 2. S. Rudresha、ER Babu、R. Thejaraju,填充率对脉动热管传热性能的实验研究及其影响,热科学与工程进展 (2019)。 3. MC Yew、LH Saw、MK Yew、WT Chong、HM Poon、WS Liew、WH Yeo。住宅建筑闭环脉动热管冷屋顶系统的开发。热能工程案例研究 (2021)。 4. Zhuantao Hea、Dongwei Zhanga、Jian Guana、Songzhen Tanga、Chao Shenb。含二氧化硅纳米流体的脉动热管的传热和流动可视化:一项实验研究。国际传热传质杂志 (2022)。 5. Ruixiang Wanga 、Meibo Xinga 、Jianlin Yub。重力对使用表面活性剂溶液的脉动热管性能的影响。国际传热传质杂志 (2020)。 6. Wang, H. Zheng, X. Han, X. Xu, G. Chen,脉动热管散热发展综述,Renew. Sustain. Energy Rev. 59 .692–709。(2016) 7. Marengo M、Mamelli M 和 Zinna S.,多匝闭环脉动热管的数值模型:由于蜿蜒引起的局部压力损失的影响。传热传质杂志,55,1036–1047,(2011)。 8. Ji Li b, Chenxi Li a, 用于现场冷却高功率服务器 CPU 的平板脉动热管模块的热特性。热科学与工程进展 (2022)。9. Pascal Messmer、Florian Schwarz、Alexander Lodermeyer、Vladimir Danova、Christian Fleßner、Stefan Becker、Rolf Hellinger。针对热点应用的改进脉动热管设计分析。国际传热传质杂志 (2022)。10. Khandekar S. Groll M.脉动热管:进展与前景,国际热科学会议论文集
本研究正在对电动汽车中使用的电池的直接液体冷却系统进行建模。该研究的目的是在不同的参数输入下研究锂离子电池模型的性能,并评估电池热管理系统模型的最佳参数,以保持其峰值性能。SolidWorks和ANSYS用于模拟和模拟电池,而Minitab软件则选择进行统计分析。热通量,入口处的质量流速和电池模型的厚度已选择为模拟的输入。获得的结果表明,随着较高的热通量和质量流量量,传热系数正在增加,但随电池模型的厚度而减小。当热通量变化时,压力下降保持恒定,但随着质量流速而增加,并且与电池厚度成反比。为了进行统计分析,提出了参数的最佳值,以保持电池以最高的传热系数运行,但压力差最低。总体而言,该研究已成功进行并实现了所陈述的目标。
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
如今,地球面临着许多问题,例如环境污染和气候变化。这些严重的问题多年来一直影响着地球及其生物。在这个时代,绿色清洁能源对下一代至关重要。为了克服这些问题,一些尝试发挥了重要作用。其中之一就是将替代能源融入人类的生活。随着这一趋势的发展,电动汽车 (EV) 已出现在汽车行业中。电动汽车面临的最重要挑战之一是热管理。本文采用数值方法研究了不同冷却系统对电动汽车电池的性能。根据结果,两种配置在热分布、材料、温度变化、维护等方面各有优势。关键词:电动汽车冷却系统、冷却剂、BTMS(电池热管理系统)、锂离子电池、CFD 方法。
环形翅片是一种特殊的机械传热装置,其径向变化,经常用于应用热工程。在工作装置中添加环形翅片可增加与周围流体接触的表面积。翅片安装的其他潜在领域包括散热器、发电厂热交换器,并且它在可持续能源技术中也发挥着重要作用。本研究的主要目的是引入一种有效的环形翅片能量模型,该模型受热辐射、磁力、导热系数、加热源的影响,并添加了改进的 Tiwari-Das 模型。然后,进行数值处理以获得所需的效率。从结果可以看出,通过加强 α 1 、α 2 和 γ 1 的物理强度以及使用三元纳米流体使其效率更高,翅片效率显著提高。添加加热源 Q 1 使翅片效率更高,辐射数更有利于冷却它。在整个分析过程中观察到三元纳米流体的作用占主导地位,并使用现有数据验证了结果。