免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
为了以统一的方式管理空调热系统,电池热系统和电动机热系统,作者提出了一个自动开启的电动集成的热管理系统,用于电动汽车以恢复蝙蝠泰瑞的能源。首先,引入了电动汽车开发的问题以及热管理系统的重要性,其次,分析了自动驱动的热管理系统方案,并分析了每个部分的原理,还引入了触时差差的热系统的实验结果。实验结果表明:在双重蒸发系统下,压缩机速度为4500 rpm时,最大COP为2.46,最大COP充电为1180 g,最大热传递Ca Pactical ca Patiacity为4819 W(风侧热传热 +水侧热传热),蒸发温度为5.35 ous 5.35 outs cultept culteption is evapeporation is evapeporation is evapeporation sement is evapeporation us evapore pertimation 39.过冷度为10.4℃,吸气压力为280 kPa,排气压为1694 kPa。总而言之,热管理系统具有极大的节能效果,这确保在冬季供暖条件下不会大大减弱电动汽车范围,并满足舒适性的要求。关键词:热泵,电动汽车,热管理
概述清洁和可持续的能源的需求已成为全球强大的驱动力,以朝着可持续的清洁环境发展,并有抵抗力,以防止能源资源供应链中断。由于需求增加和进口石油的成本,稳定的石油供应,符合越来越高的排放标准,并且可以抵抗能源资源供应链中的破坏,因此寻找干净和绿色的推进系统已获得了新的动力。在这种情况下,由于其高效率,高能量密度和低或零排放,电池存储已被认为是清洁能源技术的关键参与者。随着电池存储成本的迅速降低,EV车市场正在全球范围内的增长。锂 - 离子电池现在已广泛用于电动汽车(EV)以及可再生电网和离网存储的可再生发电应用中。
摘要:可以通过最大程度地减少电池热管理系统(BTM)的质量来增强电池组的电池组,这是电固定翼翼应用程序的限制。在本文中,在3D域中对BTMS的使用相变材料(PCM)进行数值探索,包括等效电路电池模型。针对有效的热管理的PCM特性的参数研究是针对典型的一小时传播的。PCM在整个电池组中保持理想的工作温度(288.15 K – 308.15 K)。PCM吸收起飞过程中产生的热量,随后用于在战的巡航阶段保持细胞温度。在控制案例(无BTM)中,电池组温度低于理想工作范围以下。我们进行了一项参数研究,强调了PCM热导率对BTMS性能的微不足道,并且在测试的窗口上观察到可忽略不计的增强(0.1-10 W m -1 K -1)。但是,PCM的潜在融合热量至关重要。PCM的开发人员用于电池供电的流量,无论对导热率的不利影响如何,都必须专注于增强的潜在融合热。在长途旅行中,延长的巡航阶段和较高的海拔刺激了这个问题。PCM的独特特征提供了一种被动的低质量解决方案,值得对流量应用进行进一步研究。
摘要:电动车辆(EV)由于它们的快速发展和日益普及,零排放和高储罐效率。不过,某些功能,尤其是与电池性能,成本,寿命和保护有关的功能,限制了电动汽车的开发。为了在各种情况下以高峰效率运行,因此需要电池管理。BTMS对于控制电池的热性能至关重要。BTMS技术包括加热,空调,液体冷却,直接制冷剂冷却,相变材料(PCM)冷却和热电冷却。性能,体重,大小,成本,可靠性,安全性和能源消耗是对这些系统进行分析的权衡。根据分析,系统由两个冷却液环,一个制冷环和一个机舱HVAC环组成。电池,传动系统和机舱都会造成热负担。这些系统的模型是在软件MATLAB/SIMULINK中构建的。基于模拟的结果,BTMS对于调节电池热行为至关重要。通过将模拟模型与电池热和ML模型的集成,下一项研究可能更彻底和精确。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:由于气候变化的前景以及欧盟对现代电力电网所面临的挑战,基于分布式能源的分散系统是由基于实用性力量的集中式系统创建的。它还涉及有关电网操作和管理的新想法,尤其是在低压分销网络的水平上,在该网络的水平上,生产者发挥了特殊作用。除了将源转化为可再生能源外,其目的是通过利用灵活的网格组件的调节潜力来提高功率网格的灵活性。在能源群落涵盖的微电网和当地电网的情况下,网格灵活性的问题特别重要。许多帖子描述了通过储能来实现灵活性的任务,例如,将电动汽车中的存储资源存储或通过转换为热,空气压缩空气或过程冷却来使用能量转换。然而,似乎缺乏对该主题的探索,光伏逆变器可以在维持功率质量严格的同时提供灵活的能源。本文介绍了低压网格的当前发展,以及使用造型器安装来提供网格的灵活性和稳定性的前景。
摘要:数十年来,液体燃料一直是内燃机(ICE)的主要能源。但是,锂离子电池(LIB)已取代了环保车辆的冰,并减少了化石燃料的依赖性。本文重点介绍了电池热管理系统(BTM)的比较分析,以保持工作温度在15-35℃的范围内,并防止热失控和高温梯度,从而增加LIB生命周期和性能。建议的方法是将生物柴油用作发动机饲料和冷却液。使用ANSYS-FLUENT CFD软件工具模拟3S2P LIB模块。将四个选择性介电生物柴油用作冷却剂,即棕榈,卡兰加,贾特罗帕和玛哈油。与BTMS(主要是空气和3M NOVEC)中的常规冷却剂相比,生物柴油燃料已被证明是将LIB温度保持在最佳工作范围内的冷却剂。例如,与3M NOVEC相比,使用棕榈生物柴油可以轻巧的BTM轻巧43%,并且同样保持BTMS性能。
课程描述:随着对高性能电子设备的需求持续其指数增长,晶体管密度每18至24个月增加一倍。具有高晶体管密度的电子设备会产生热量,因此需要热管理以提高可靠性并防止过早故障。苛刻的性能规格导致包装密度增加,更高的热量和新型的热管理技术。本课程概述了微型/电力电子系统的热管理,并帮助工程师对新兴热力技术有了基本的了解。本课程将包括以下主题:电子包装的背景;散热器的热设计;热系统中的单相和多相流;用于便携式和高功率电子系统的两相热交换设备;用于热系统设计的计算流体动力学。先决条件:高级或毕业生。
利用人工缺陷技术,我们可以调整许多二维 (2D) 层状材料的能带结构和传输特性。一种原型材料系统是反点石墨烯片,其中周期性孔隙是使用纳米级聚焦离子或电子束制成的。在这里,我们研究了具有不同孔隙半径和孔隙间距的反点石墨烯样品的电导率、热电势以及冷却和制冷的有效速率。我们使用了一种考虑传输对载流子能量的敏感性的计算方法,可用于描述扩散、弹道和量子跳跃状态下的弹性和非弹性散射。我们发现,与一些传统方法相比,我们使用新计算方法得到的结果与实验数据更加一致。同样有趣的是,优化的冷却和制冷的有效速率对孔隙间距和孔隙半径的分布变化非常稳健,这意味着易于工业化和廉价制造。同样的分析和研究也可以扩展到许多其他层状材料,包括过渡金属二硫属化物(TMD)、蓝色磷烯和碲烯。